@@ -208,6 +208,8 @@ Execute the built executable file:
./build/ppocr [--param1][--param2][...]
```
**Note**:ppocr uses the `PP-OCRv3` model by default, and the input shape used by the recognition model is `3, 48, 320`, so if you use the recognition function, you need to add the parameter `--rec_img_h=48`, if you do not use the default `PP-OCRv3` model, you do not need to set this parameter.
### 1. Lightweight Chinese Recognition Model Inference
**Note**: The input shape used by the recognition model of `PP-OCRv3` is `3,48,320`, and the parameter `--rec_image_shape=3,48,320` needs to be added. If the recognition model of `PP-OCRv3` is not used, this parameter does not need to be set.
For lightweight Chinese recognition model inference, you can execute the following commands:
```
...
...
@@ -117,6 +120,8 @@ After executing the command, the prediction results (classification angle and sc
<aname="CONCATENATION"></a>
## Text Detection Angle Classification and Recognition Inference Concatenation
**Note**: The input shape used by the recognition model of `PP-OCRv3` is `3,48,320`, and the parameter `--rec_image_shape=3,48,320` needs to be added. If the recognition model of `PP-OCRv3` is not used, this parameter does not need to be set.
When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model. The parameter `use_mp` specifies whether to use multi-process to infer `total_process_num` specifies process number when using multi-process. The parameter . The visualized recognition results are saved to the `./inference_results` folder by default.
If you do not use the provided test image, you can replace the following `--image_dir` parameter with the corresponding test image path
**Note**: The whl package uses the `PP-OCRv3` model by default, and the input shape used by the recognition model is `3,48,320`, so if you use the recognition function, you need to add the parameter `--rec_image_shape 3,48,320`, if you do not use the default `PP- OCRv3` model, you do not need to set this parameter.
**Note**: The whl package uses the `PP-OCRv3` model by default, and the input shape used by the recognition model is `3,48,320`, so if you use the recognition function, you need to add the parameter `--rec_image_shape 3,48,320`, if you do not use the default `PP- OCRv3` model, you do not need to set this parameter.
* detection classification and recognition
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --use_angle_clstrue--lang en --rec_image_shape 3,48,320