det_sast_head.py 11.4 KB
Newer Older
L
licx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
from ..common_functions import conv_bn_layer, deconv_bn_layer
from collections import OrderedDict


class SASTHead(object):
    """
    SAST: 
L
licx 已提交
27
        see arxiv: https://arxiv.org/abs/1908.05498
L
licx 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    args:
        params(dict): the super parameters for network build
    """

    def __init__(self, params):
        self.model_name = params['model_name']
        self.with_cab = params['with_cab']

    def FPN_Up_Fusion(self, blocks):
        """
        blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
                1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
        """
        f = [blocks['block_6'], blocks['block_5'], blocks['block_4'], blocks['block_3'], blocks['block_2']]
        num_outputs = [256, 256, 192, 192, 128]
        g = [None, None, None, None, None]
        h = [None, None, None, None, None] 
        for i in range(5):
            h[i] = conv_bn_layer(input=f[i], num_filters=num_outputs[i],
                                filter_size=1, stride=1, act=None, name='fpn_up_h'+str(i))

        for i in range(4):
            if i == 0:
                g[i] = deconv_bn_layer(input=h[i], num_filters=num_outputs[i + 1], act=None, name='fpn_up_g0')
                print("g[{}] shape: {}".format(i, g[i].shape))
            else:
                g[i] = fluid.layers.elementwise_add(x=g[i - 1], y=h[i])
                g[i] = fluid.layers.relu(g[i])
                #g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
                #                    filter_size=1, stride=1, act='relu')
                g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
                                    filter_size=3, stride=1, act='relu', name='fpn_up_g%d_1'%i)
                g[i] = deconv_bn_layer(input=g[i], num_filters=num_outputs[i + 1], act=None, name='fpn_up_g%d_2'%i)
                print("g[{}] shape: {}".format(i, g[i].shape))

        g[4] = fluid.layers.elementwise_add(x=g[3], y=h[4])
        g[4] = fluid.layers.relu(g[4])
        g[4] = conv_bn_layer(input=g[4], num_filters=num_outputs[4],
                            filter_size=3, stride=1, act='relu', name='fpn_up_fusion_1')
        g[4] = conv_bn_layer(input=g[4], num_filters=num_outputs[4],
                            filter_size=1, stride=1, act=None, name='fpn_up_fusion_2')
        
        return g[4]

    def FPN_Down_Fusion(self, blocks):
        """
        blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
                1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
        """
        f = [blocks['block_0'], blocks['block_1'], blocks['block_2']]
        num_outputs = [32, 64, 128]
        g = [None, None, None]
        h = [None, None, None] 
        for i in range(3):
            h[i] = conv_bn_layer(input=f[i], num_filters=num_outputs[i],
                                filter_size=3, stride=1, act=None, name='fpn_down_h'+str(i))
        for i in range(2):
            if i == 0:
                g[i] = conv_bn_layer(input=h[i], num_filters=num_outputs[i+1], filter_size=3, stride=2, act=None, name='fpn_down_g0')
            else:
                g[i] = fluid.layers.elementwise_add(x=g[i - 1], y=h[i])
                g[i] = fluid.layers.relu(g[i])
                g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i], filter_size=3, stride=1, act='relu', name='fpn_down_g%d_1'%i)
                g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i+1], filter_size=3, stride=2, act=None, name='fpn_down_g%d_2'%i)
L
licx 已提交
92
            # print("g[{}] shape: {}".format(i, g[i].shape)) 
L
licx 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        g[2] = fluid.layers.elementwise_add(x=g[1], y=h[2])
        g[2] = fluid.layers.relu(g[2])
        g[2] = conv_bn_layer(input=g[2], num_filters=num_outputs[2],
                            filter_size=3, stride=1, act='relu', name='fpn_down_fusion_1')
        g[2] = conv_bn_layer(input=g[2], num_filters=num_outputs[2],
                            filter_size=1, stride=1, act=None, name='fpn_down_fusion_2')
        return g[2]

    def SAST_Header1(self, f_common):
        """Detector header."""
        #f_score
        f_score = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_score1')
        f_score = conv_bn_layer(input=f_score, num_filters=64, filter_size=3, stride=1, act='relu', name='f_score2')
        f_score = conv_bn_layer(input=f_score, num_filters=128, filter_size=1, stride=1, act='relu', name='f_score3')
        f_score = conv_bn_layer(input=f_score, num_filters=1, filter_size=3, stride=1, name='f_score4')
        f_score = fluid.layers.sigmoid(f_score)
L
licx 已提交
109
        # print("f_score shape: {}".format(f_score.shape))
L
licx 已提交
110 111 112 113 114 115

        #f_boder
        f_border = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_border1')
        f_border = conv_bn_layer(input=f_border, num_filters=64, filter_size=3, stride=1, act='relu', name='f_border2')
        f_border = conv_bn_layer(input=f_border, num_filters=128, filter_size=1, stride=1, act='relu', name='f_border3')
        f_border = conv_bn_layer(input=f_border, num_filters=4, filter_size=3, stride=1, name='f_border4')
L
licx 已提交
116
        # print("f_border shape: {}".format(f_border.shape))
L
licx 已提交
117 118 119 120 121 122 123 124 125 126
        
        return f_score, f_border

    def SAST_Header2(self, f_common):
        """Detector header.""" 
        #f_tvo
        f_tvo = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_tvo1')
        f_tvo = conv_bn_layer(input=f_tvo, num_filters=64, filter_size=3, stride=1, act='relu', name='f_tvo2')
        f_tvo = conv_bn_layer(input=f_tvo, num_filters=128, filter_size=1, stride=1, act='relu', name='f_tvo3')
        f_tvo = conv_bn_layer(input=f_tvo, num_filters=8, filter_size=3, stride=1, name='f_tvo4')
L
licx 已提交
127
        # print("f_tvo shape: {}".format(f_tvo.shape))
L
licx 已提交
128 129 130 131 132 133

        #f_tco
        f_tco = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_tco1')
        f_tco = conv_bn_layer(input=f_tco, num_filters=64, filter_size=3, stride=1, act='relu', name='f_tco2')
        f_tco = conv_bn_layer(input=f_tco, num_filters=128, filter_size=1, stride=1, act='relu', name='f_tco3')
        f_tco = conv_bn_layer(input=f_tco, num_filters=2, filter_size=3, stride=1, name='f_tco4')
L
licx 已提交
134
        # print("f_tco shape: {}".format(f_tco.shape))
L
licx 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        
        return f_tvo, f_tco

    def cross_attention(self, f_common):
        """
        """
        f_shape = fluid.layers.shape(f_common)
        f_theta = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_theta')
        f_phi = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_phi')
        f_g = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_g')
        ### horizon
        fh_theta = f_theta
        fh_phi = f_phi
        fh_g = f_g
        #flatten
        fh_theta = fluid.layers.transpose(fh_theta, [0, 2, 3, 1])
        fh_theta = fluid.layers.reshape(fh_theta, [f_shape[0] * f_shape[2], f_shape[3], 128])
        fh_phi = fluid.layers.transpose(fh_phi, [0, 2, 3, 1])
        fh_phi = fluid.layers.reshape(fh_phi, [f_shape[0] * f_shape[2], f_shape[3], 128])
        fh_g = fluid.layers.transpose(fh_g, [0, 2, 3, 1])
        fh_g = fluid.layers.reshape(fh_g, [f_shape[0] * f_shape[2], f_shape[3], 128])
        #correlation
        fh_attn = fluid.layers.matmul(fh_theta, fluid.layers.transpose(fh_phi, [0, 2, 1]))
        #scale
        fh_attn = fh_attn / (128 ** 0.5)
        fh_attn = fluid.layers.softmax(fh_attn)
        #weighted sum
        fh_weight = fluid.layers.matmul(fh_attn, fh_g)
        fh_weight = fluid.layers.reshape(fh_weight, [f_shape[0], f_shape[2], f_shape[3], 128])
L
licx 已提交
164
        # print("fh_weight: {}".format(fh_weight.shape))
L
licx 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        fh_weight = fluid.layers.transpose(fh_weight, [0, 3, 1, 2])
        fh_weight = conv_bn_layer(input=fh_weight, num_filters=128, filter_size=1, stride=1, name='fh_weight')
        #short cut
        fh_sc = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, name='fh_sc')
        f_h = fluid.layers.relu(fh_weight + fh_sc)
        ######
        #vertical
        fv_theta = fluid.layers.transpose(f_theta, [0, 1, 3, 2])
        fv_phi = fluid.layers.transpose(f_phi, [0, 1, 3, 2])
        fv_g = fluid.layers.transpose(f_g, [0, 1, 3, 2])
        #flatten
        fv_theta = fluid.layers.transpose(fv_theta, [0, 2, 3, 1])
        fv_theta = fluid.layers.reshape(fv_theta, [f_shape[0] * f_shape[3], f_shape[2], 128])
        fv_phi = fluid.layers.transpose(fv_phi, [0, 2, 3, 1])
        fv_phi = fluid.layers.reshape(fv_phi, [f_shape[0] * f_shape[3], f_shape[2], 128])
        fv_g = fluid.layers.transpose(fv_g, [0, 2, 3, 1])
        fv_g = fluid.layers.reshape(fv_g, [f_shape[0] * f_shape[3], f_shape[2], 128])
        #correlation
        fv_attn = fluid.layers.matmul(fv_theta, fluid.layers.transpose(fv_phi, [0, 2, 1]))
        #scale
        fv_attn = fv_attn / (128 ** 0.5)
        fv_attn = fluid.layers.softmax(fv_attn)
        #weighted sum
        fv_weight = fluid.layers.matmul(fv_attn, fv_g)
        fv_weight = fluid.layers.reshape(fv_weight, [f_shape[0], f_shape[3], f_shape[2], 128])
L
licx 已提交
190
        # print("fv_weight: {}".format(fv_weight.shape))
L
licx 已提交
191 192 193 194 195 196 197 198 199 200 201
        fv_weight = fluid.layers.transpose(fv_weight, [0, 3, 2, 1])
        fv_weight = conv_bn_layer(input=fv_weight, num_filters=128, filter_size=1, stride=1, name='fv_weight')
        #short cut
        fv_sc = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, name='fv_sc')
        f_v = fluid.layers.relu(fv_weight + fv_sc)
        ######
        f_attn = fluid.layers.concat([f_h, f_v], axis=1)
        f_attn = conv_bn_layer(input=f_attn, num_filters=128, filter_size=1, stride=1, act='relu', name='f_attn')  
        return f_attn
        
    def __call__(self, blocks, with_cab=False):
L
licx 已提交
202 203
        # for k, v in blocks.items():
        #     print(k, v.shape)
L
licx 已提交
204 205 206

        #down fpn
        f_down = self.FPN_Down_Fusion(blocks)
L
licx 已提交
207
        # print("f_down shape: {}".format(f_down.shape))
L
licx 已提交
208 209
        #up fpn
        f_up = self.FPN_Up_Fusion(blocks)
L
licx 已提交
210
        # print("f_up shape: {}".format(f_up.shape))
L
licx 已提交
211 212 213
        #fusion
        f_common = fluid.layers.elementwise_add(x=f_down, y=f_up)
        f_common = fluid.layers.relu(f_common)
L
licx 已提交
214
        # print("f_common: {}".format(f_common.shape))
L
licx 已提交
215 216
        
        if self.with_cab:
L
licx 已提交
217
            # print('enhence f_common with CAB.')
L
licx 已提交
218 219 220 221 222 223 224 225 226 227 228
            f_common = self.cross_attention(f_common)
            
        f_score, f_border= self.SAST_Header1(f_common)
        f_tvo, f_tco = self.SAST_Header2(f_common)

        predicts = OrderedDict()
        predicts['f_score'] = f_score
        predicts['f_border'] = f_border
        predicts['f_tvo'] = f_tvo
        predicts['f_tco'] = f_tco
        return predicts