det_sast_head.py 11.3 KB
Newer Older
L
licx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
from ..common_functions import conv_bn_layer, deconv_bn_layer
from collections import OrderedDict


class SASTHead(object):
    """
    SAST: 
        see arxiv: https://
    args:
        params(dict): the super parameters for network build
    """

    def __init__(self, params):
        self.model_name = params['model_name']
        self.with_cab = params['with_cab']

    def FPN_Up_Fusion(self, blocks):
        """
        blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
                1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
        """
        f = [blocks['block_6'], blocks['block_5'], blocks['block_4'], blocks['block_3'], blocks['block_2']]
        num_outputs = [256, 256, 192, 192, 128]
        g = [None, None, None, None, None]
        h = [None, None, None, None, None] 
        for i in range(5):
            h[i] = conv_bn_layer(input=f[i], num_filters=num_outputs[i],
                                filter_size=1, stride=1, act=None, name='fpn_up_h'+str(i))

        for i in range(4):
            if i == 0:
                g[i] = deconv_bn_layer(input=h[i], num_filters=num_outputs[i + 1], act=None, name='fpn_up_g0')
                print("g[{}] shape: {}".format(i, g[i].shape))
            else:
                g[i] = fluid.layers.elementwise_add(x=g[i - 1], y=h[i])
                g[i] = fluid.layers.relu(g[i])
                #g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
                #                    filter_size=1, stride=1, act='relu')
                g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
                                    filter_size=3, stride=1, act='relu', name='fpn_up_g%d_1'%i)
                g[i] = deconv_bn_layer(input=g[i], num_filters=num_outputs[i + 1], act=None, name='fpn_up_g%d_2'%i)
                print("g[{}] shape: {}".format(i, g[i].shape))

        g[4] = fluid.layers.elementwise_add(x=g[3], y=h[4])
        g[4] = fluid.layers.relu(g[4])
        g[4] = conv_bn_layer(input=g[4], num_filters=num_outputs[4],
                            filter_size=3, stride=1, act='relu', name='fpn_up_fusion_1')
        g[4] = conv_bn_layer(input=g[4], num_filters=num_outputs[4],
                            filter_size=1, stride=1, act=None, name='fpn_up_fusion_2')
        
        return g[4]

    def FPN_Down_Fusion(self, blocks):
        """
        blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
                1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
        """
        f = [blocks['block_0'], blocks['block_1'], blocks['block_2']]
        num_outputs = [32, 64, 128]
        g = [None, None, None]
        h = [None, None, None] 
        for i in range(3):
            h[i] = conv_bn_layer(input=f[i], num_filters=num_outputs[i],
                                filter_size=3, stride=1, act=None, name='fpn_down_h'+str(i))
        for i in range(2):
            if i == 0:
                g[i] = conv_bn_layer(input=h[i], num_filters=num_outputs[i+1], filter_size=3, stride=2, act=None, name='fpn_down_g0')
            else:
                g[i] = fluid.layers.elementwise_add(x=g[i - 1], y=h[i])
                g[i] = fluid.layers.relu(g[i])
                g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i], filter_size=3, stride=1, act='relu', name='fpn_down_g%d_1'%i)
                g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i+1], filter_size=3, stride=2, act=None, name='fpn_down_g%d_2'%i)
            print("g[{}] shape: {}".format(i, g[i].shape)) 
        g[2] = fluid.layers.elementwise_add(x=g[1], y=h[2])
        g[2] = fluid.layers.relu(g[2])
        g[2] = conv_bn_layer(input=g[2], num_filters=num_outputs[2],
                            filter_size=3, stride=1, act='relu', name='fpn_down_fusion_1')
        g[2] = conv_bn_layer(input=g[2], num_filters=num_outputs[2],
                            filter_size=1, stride=1, act=None, name='fpn_down_fusion_2')
        return g[2]

    def SAST_Header1(self, f_common):
        """Detector header."""
        #f_score
        f_score = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_score1')
        f_score = conv_bn_layer(input=f_score, num_filters=64, filter_size=3, stride=1, act='relu', name='f_score2')
        f_score = conv_bn_layer(input=f_score, num_filters=128, filter_size=1, stride=1, act='relu', name='f_score3')
        f_score = conv_bn_layer(input=f_score, num_filters=1, filter_size=3, stride=1, name='f_score4')
        f_score = fluid.layers.sigmoid(f_score)
        print("f_score shape: {}".format(f_score.shape))

        #f_boder
        f_border = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_border1')
        f_border = conv_bn_layer(input=f_border, num_filters=64, filter_size=3, stride=1, act='relu', name='f_border2')
        f_border = conv_bn_layer(input=f_border, num_filters=128, filter_size=1, stride=1, act='relu', name='f_border3')
        f_border = conv_bn_layer(input=f_border, num_filters=4, filter_size=3, stride=1, name='f_border4')
        print("f_border shape: {}".format(f_border.shape))
        
        return f_score, f_border

    def SAST_Header2(self, f_common):
        """Detector header.""" 
        #f_tvo
        f_tvo = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_tvo1')
        f_tvo = conv_bn_layer(input=f_tvo, num_filters=64, filter_size=3, stride=1, act='relu', name='f_tvo2')
        f_tvo = conv_bn_layer(input=f_tvo, num_filters=128, filter_size=1, stride=1, act='relu', name='f_tvo3')
        f_tvo = conv_bn_layer(input=f_tvo, num_filters=8, filter_size=3, stride=1, name='f_tvo4')
        print("f_tvo shape: {}".format(f_tvo.shape))

        #f_tco
        f_tco = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_tco1')
        f_tco = conv_bn_layer(input=f_tco, num_filters=64, filter_size=3, stride=1, act='relu', name='f_tco2')
        f_tco = conv_bn_layer(input=f_tco, num_filters=128, filter_size=1, stride=1, act='relu', name='f_tco3')
        f_tco = conv_bn_layer(input=f_tco, num_filters=2, filter_size=3, stride=1, name='f_tco4')
        print("f_tco shape: {}".format(f_tco.shape))
        
        return f_tvo, f_tco

    def cross_attention(self, f_common):
        """
        """
        f_shape = fluid.layers.shape(f_common)
        f_theta = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_theta')
        f_phi = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_phi')
        f_g = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_g')
        ### horizon
        fh_theta = f_theta
        fh_phi = f_phi
        fh_g = f_g
        #flatten
        fh_theta = fluid.layers.transpose(fh_theta, [0, 2, 3, 1])
        fh_theta = fluid.layers.reshape(fh_theta, [f_shape[0] * f_shape[2], f_shape[3], 128])
        fh_phi = fluid.layers.transpose(fh_phi, [0, 2, 3, 1])
        fh_phi = fluid.layers.reshape(fh_phi, [f_shape[0] * f_shape[2], f_shape[3], 128])
        fh_g = fluid.layers.transpose(fh_g, [0, 2, 3, 1])
        fh_g = fluid.layers.reshape(fh_g, [f_shape[0] * f_shape[2], f_shape[3], 128])
        #correlation
        fh_attn = fluid.layers.matmul(fh_theta, fluid.layers.transpose(fh_phi, [0, 2, 1]))
        #scale
        fh_attn = fh_attn / (128 ** 0.5)
        fh_attn = fluid.layers.softmax(fh_attn)
        #weighted sum
        fh_weight = fluid.layers.matmul(fh_attn, fh_g)
        fh_weight = fluid.layers.reshape(fh_weight, [f_shape[0], f_shape[2], f_shape[3], 128])
        print("fh_weight: {}".format(fh_weight.shape))
        fh_weight = fluid.layers.transpose(fh_weight, [0, 3, 1, 2])
        fh_weight = conv_bn_layer(input=fh_weight, num_filters=128, filter_size=1, stride=1, name='fh_weight')
        #short cut
        fh_sc = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, name='fh_sc')
        f_h = fluid.layers.relu(fh_weight + fh_sc)
        ######
        #vertical
        fv_theta = fluid.layers.transpose(f_theta, [0, 1, 3, 2])
        fv_phi = fluid.layers.transpose(f_phi, [0, 1, 3, 2])
        fv_g = fluid.layers.transpose(f_g, [0, 1, 3, 2])
        #flatten
        fv_theta = fluid.layers.transpose(fv_theta, [0, 2, 3, 1])
        fv_theta = fluid.layers.reshape(fv_theta, [f_shape[0] * f_shape[3], f_shape[2], 128])
        fv_phi = fluid.layers.transpose(fv_phi, [0, 2, 3, 1])
        fv_phi = fluid.layers.reshape(fv_phi, [f_shape[0] * f_shape[3], f_shape[2], 128])
        fv_g = fluid.layers.transpose(fv_g, [0, 2, 3, 1])
        fv_g = fluid.layers.reshape(fv_g, [f_shape[0] * f_shape[3], f_shape[2], 128])
        #correlation
        fv_attn = fluid.layers.matmul(fv_theta, fluid.layers.transpose(fv_phi, [0, 2, 1]))
        #scale
        fv_attn = fv_attn / (128 ** 0.5)
        fv_attn = fluid.layers.softmax(fv_attn)
        #weighted sum
        fv_weight = fluid.layers.matmul(fv_attn, fv_g)
        fv_weight = fluid.layers.reshape(fv_weight, [f_shape[0], f_shape[3], f_shape[2], 128])
        print("fv_weight: {}".format(fv_weight.shape))
        fv_weight = fluid.layers.transpose(fv_weight, [0, 3, 2, 1])
        fv_weight = conv_bn_layer(input=fv_weight, num_filters=128, filter_size=1, stride=1, name='fv_weight')
        #short cut
        fv_sc = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, name='fv_sc')
        f_v = fluid.layers.relu(fv_weight + fv_sc)
        ######
        f_attn = fluid.layers.concat([f_h, f_v], axis=1)
        f_attn = conv_bn_layer(input=f_attn, num_filters=128, filter_size=1, stride=1, act='relu', name='f_attn')  
        return f_attn
        
    def __call__(self, blocks, with_cab=False):
        for k, v in blocks.items():
            print(k, v.shape)

        #down fpn
        f_down = self.FPN_Down_Fusion(blocks)
        print("f_down shape: {}".format(f_down.shape))
        #up fpn
        f_up = self.FPN_Up_Fusion(blocks)
        print("f_up shape: {}".format(f_up.shape))
        #fusion
        f_common = fluid.layers.elementwise_add(x=f_down, y=f_up)
        f_common = fluid.layers.relu(f_common)
        print("f_common: {}".format(f_common.shape))
        
        if self.with_cab:
            print('enhence f_common with CAB.')
            f_common = self.cross_attention(f_common)
            
        f_score, f_border= self.SAST_Header1(f_common)
        f_tvo, f_tco = self.SAST_Header2(f_common)

        predicts = OrderedDict()
        predicts['f_score'] = f_score
        predicts['f_border'] = f_border
        predicts['f_tvo'] = f_tvo
        predicts['f_tco'] = f_tco
        return predicts