distillation_loss.py 9.2 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
L
fix bug  
LDOUBLEV 已提交
17 18
import numpy as np
import cv2
littletomatodonkey's avatar
littletomatodonkey 已提交
19 20 21

from .rec_ctc_loss import CTCLoss
from .basic_loss import DMLLoss
22
from .basic_loss import DistanceLoss
L
LDOUBLEV 已提交
23 24
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
littletomatodonkey's avatar
littletomatodonkey 已提交
25 26


L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38
def _sum_loss(loss_dict):
    if "loss" in loss_dict.keys():
        return loss_dict
    else:
        loss_dict["loss"] = 0.
        for k, value in loss_dict.items():
            if k == "loss":
                continue
            else:
                loss_dict["loss"] += value
        return loss_dict

L
LDOUBLEV 已提交
39 40

class DistillationDMLLoss(DMLLoss):
littletomatodonkey's avatar
littletomatodonkey 已提交
41 42 43
    """
    """

L
LDOUBLEV 已提交
44 45 46
    def __init__(self,
                 model_name_pairs=[],
                 act=None,
47
                 use_log=False,
L
LDOUBLEV 已提交
48 49
                 key=None,
                 maps_name=None,
L
LDOUBLEV 已提交
50
                 name="dml"):
51
        super().__init__(act=act, use_log=use_log)
52
        assert isinstance(model_name_pairs, list)
littletomatodonkey's avatar
littletomatodonkey 已提交
53
        self.key = key
L
fix bug  
LDOUBLEV 已提交
54
        self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
littletomatodonkey's avatar
littletomatodonkey 已提交
55
        self.name = name
L
LDOUBLEV 已提交
56
        self.maps_name = self._check_maps_name(maps_name)
57

L
fix bug  
LDOUBLEV 已提交
58 59 60
    def _check_model_name_pairs(self, model_name_pairs):
        if not isinstance(model_name_pairs, list):
            return []
61 62
        elif isinstance(model_name_pairs[0], list) and isinstance(
                model_name_pairs[0][0], str):
L
fix bug  
LDOUBLEV 已提交
63 64 65
            return model_name_pairs
        else:
            return [model_name_pairs]
L
LDOUBLEV 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

    def _check_maps_name(self, maps_name):
        if maps_name is None:
            return None
        elif type(maps_name) == str:
            return [maps_name]
        elif type(maps_name) == list:
            return [maps_name]
        else:
            return None

    def _slice_out(self, outs):
        new_outs = {}
        for k in self.maps_name:
            if k == "thrink_maps":
L
LDOUBLEV 已提交
81
                new_outs[k] = outs[:, 0, :, :]
L
LDOUBLEV 已提交
82
            elif k == "threshold_maps":
L
LDOUBLEV 已提交
83
                new_outs[k] = outs[:, 1, :, :]
L
LDOUBLEV 已提交
84
            elif k == "binary_maps":
L
LDOUBLEV 已提交
85
                new_outs[k] = outs[:, 2, :, :]
L
LDOUBLEV 已提交
86 87
            else:
                continue
L
fix bug  
LDOUBLEV 已提交
88
        return new_outs
littletomatodonkey's avatar
littletomatodonkey 已提交
89 90 91

    def forward(self, predicts, batch):
        loss_dict = dict()
92 93 94
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
littletomatodonkey's avatar
littletomatodonkey 已提交
95 96 97
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
L
LDOUBLEV 已提交
98 99 100 101 102 103 104 105 106

            if self.maps_name is None:
                loss = super().forward(out1, out2)
                if isinstance(loss, dict):
                    for key in loss:
                        loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
                                                       idx)] = loss[key]
                else:
                    loss_dict["{}_{}".format(self.name, idx)] = loss
107
            else:
L
LDOUBLEV 已提交
108 109
                outs1 = self._slice_out(out1)
                outs2 = self._slice_out(out2)
L
LDOUBLEV 已提交
110
                for _c, k in enumerate(outs1.keys()):
L
LDOUBLEV 已提交
111 112 113 114 115 116
                    loss = super().forward(outs1[k], outs2[k])
                    if isinstance(loss, dict):
                        for key in loss:
                            loss_dict["{}_{}_{}_{}_{}".format(key, pair[
                                0], pair[1], map_name, idx)] = loss[key]
                    else:
117 118 119
                        loss_dict["{}_{}_{}".format(self.name, self.maps_name[
                            _c], idx)] = loss

L
LDOUBLEV 已提交
120 121
        loss_dict = _sum_loss(loss_dict)

littletomatodonkey's avatar
littletomatodonkey 已提交
122 123 124 125 126 127 128 129 130 131 132 133
        return loss_dict


class DistillationCTCLoss(CTCLoss):
    def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
        super().__init__()
        self.model_name_list = model_name_list
        self.key = key
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
134
        for idx, model_name in enumerate(self.model_name_list):
littletomatodonkey's avatar
littletomatodonkey 已提交
135 136 137 138 139
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)
            if isinstance(loss, dict):
140 141 142 143 144
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, model_name,
                                                idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss
littletomatodonkey's avatar
littletomatodonkey 已提交
145
        return loss_dict
146 147


L
LDOUBLEV 已提交
148 149 150 151 152 153 154 155 156
class DistillationDBLoss(DBLoss):
    def __init__(self,
                 model_name_list=[],
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
L
LDOUBLEV 已提交
157
                 name="db",
L
LDOUBLEV 已提交
158 159 160 161 162 163
                 **kwargs):
        super().__init__()
        self.model_name_list = model_name_list
        self.name = name
        self.key = None

L
fix bug  
LDOUBLEV 已提交
164
    def forward(self, predicts, batch):
L
LDOUBLEV 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        loss_dict = {}
        for idx, model_name in enumerate(self.model_name_list):
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)

            if isinstance(loss, dict):
                for key in loss.keys():
                    if key == "loss":
                        continue
                    name = "{}_{}_{}".format(self.name, model_name, key)
                    loss_dict[name] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss

        loss_dict = _sum_loss(loss_dict)
        return loss_dict


class DistillationDilaDBLoss(DBLoss):
    def __init__(self,
                 model_name_pairs=[],
L
fix bug  
LDOUBLEV 已提交
188
                 key=None,
L
LDOUBLEV 已提交
189 190 191 192 193 194 195 196 197 198
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 name="dila_dbloss"):
        super().__init__()
        self.model_name_pairs = model_name_pairs
        self.name = name
L
fix bug  
LDOUBLEV 已提交
199
        self.key = key
L
LDOUBLEV 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            stu_outs = predicts[pair[0]]
            tch_outs = predicts[pair[1]]
            if self.key is not None:
                stu_preds = stu_outs[self.key]
                tch_preds = tch_outs[self.key]

            stu_shrink_maps = stu_preds[:, 0, :, :]
            stu_binary_maps = stu_preds[:, 2, :, :]

            # dilation to teacher prediction
            dilation_w = np.array([[1, 1], [1, 1]])
            th_shrink_maps = tch_preds[:, 0, :, :]
            th_shrink_maps = th_shrink_maps.numpy() > 0.3  # thresh = 0.3 
            dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
            for i in range(th_shrink_maps.shape[0]):
                dilate_maps[i] = cv2.dilate(
                    th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
            th_shrink_maps = paddle.to_tensor(dilate_maps)

            label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[
                1:]

            # calculate the shrink map loss
            bce_loss = self.alpha * self.bce_loss(
                stu_shrink_maps, th_shrink_maps, label_shrink_mask)
            loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
                                              label_shrink_mask)

            # k = f"{self.name}_{pair[0]}_{pair[1]}"
            k = "{}_{}_{}".format(self.name, pair[0], pair[1])
            loss_dict[k] = bce_loss + loss_binary_maps

        loss_dict = _sum_loss(loss_dict)
L
fix bug  
LDOUBLEV 已提交
237
        return loss_dict
L
LDOUBLEV 已提交
238 239


240 241 242 243 244 245 246 247 248 249
class DistillationDistanceLoss(DistanceLoss):
    """
    """

    def __init__(self,
                 mode="l2",
                 model_name_pairs=[],
                 key=None,
                 name="loss_distance",
                 **kargs):
littletomatodonkey's avatar
littletomatodonkey 已提交
250
        super().__init__(mode=mode, **kargs)
251 252 253
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
littletomatodonkey's avatar
littletomatodonkey 已提交
254
        self.name = name + "_l2"
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
                        key]
            else:
littletomatodonkey's avatar
littletomatodonkey 已提交
270 271
                loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
                                               idx)] = loss
272
        return loss_dict