ocr_cls.cpp 3.6 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_cls.h>

namespace PaddleOCR {

cv::Mat Classifier::Run(cv::Mat &img) {
  cv::Mat src_img;
  img.copyTo(src_img);
  cv::Mat resize_img;

  std::vector<int> rec_image_shape = {3, 32, 100};
  int index = 0;
  float wh_ratio = float(img.cols) / float(img.rows);

  this->resize_op_.Run(img, resize_img, rec_image_shape);

  this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                          this->is_scale_);

  std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);

  this->permute_op_.Run(&resize_img, input.data());

W
WenmuZhou 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
  // Inference.
  if (this->use_zero_copy_run_) {
    auto input_names = this->predictor_->GetInputNames();
    auto input_t = this->predictor_->GetInputTensor(input_names[0]);
    input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
    input_t->copy_from_cpu(input.data());
    this->predictor_->ZeroCopyRun();
  } else {
    paddle::PaddleTensor input_t;
    input_t.shape = {1, 3, resize_img.rows, resize_img.cols};
    input_t.data =
        paddle::PaddleBuf(input.data(), input.size() * sizeof(float));
    input_t.dtype = PaddleDType::FLOAT32;
    std::vector<paddle::PaddleTensor> outputs;
    this->predictor_->Run({input_t}, &outputs, 1);
  }
W
WenmuZhou 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

  std::vector<float> softmax_out;
  std::vector<int64_t> label_out;
  auto output_names = this->predictor_->GetOutputNames();
  auto softmax_out_t = this->predictor_->GetOutputTensor(output_names[0]);
  auto label_out_t = this->predictor_->GetOutputTensor(output_names[1]);
  auto softmax_shape_out = softmax_out_t->shape();
  auto label_shape_out = label_out_t->shape();

  int softmax_out_num =
      std::accumulate(softmax_shape_out.begin(), softmax_shape_out.end(), 1,
                      std::multiplies<int>());

  int label_out_num =
      std::accumulate(label_shape_out.begin(), label_shape_out.end(), 1,
                      std::multiplies<int>());
  softmax_out.resize(softmax_out_num);
  label_out.resize(label_out_num);

  softmax_out_t->copy_to_cpu(softmax_out.data());
  label_out_t->copy_to_cpu(label_out.data());

  int label = label_out[0];
  float score = softmax_out[label];
  //    std::cout << "\nlabel "<<label<<" score: "<<score;
  if (label % 2 == 1 && score > this->cls_thresh) {
    cv::rotate(src_img, src_img, 1);
  }
  return src_img;
}

void Classifier::LoadModel(const std::string &model_dir) {
  AnalysisConfig config;
  config.SetModel(model_dir + "/model", model_dir + "/params");

  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
  } else {
    config.DisableGpu();
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
    }
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }

  // false for zero copy tensor
  config.SwitchUseFeedFetchOps(false);
  // true for multiple input
  config.SwitchSpecifyInputNames(true);

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
  config.DisableGlogInfo();

  this->predictor_ = CreatePaddlePredictor(config);
}
} // namespace PaddleOCR