img_tools.py 14.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import math
import cv2
import numpy as np
T
tink2123 已提交
18
import random
L
LDOUBLEV 已提交
19 20
from ppocr.utils.utility import initial_logger
logger = initial_logger()
L
LDOUBLEV 已提交
21

littletomatodonkey's avatar
littletomatodonkey 已提交
22 23
from .text_image_aug.augment import tia_distort, tia_stretch, tia_perspective

L
LDOUBLEV 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

def get_bounding_box_rect(pos):
    left = min(pos[0])
    right = max(pos[0])
    top = min(pos[1])
    bottom = max(pos[1])
    return [left, top, right, bottom]


def resize_norm_img(img, image_shape):
    imgC, imgH, imgW = image_shape
    h = img.shape[0]
    w = img.shape[1]
    ratio = w / float(h)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


T
tink2123 已提交
56 57 58
def resize_norm_img_chinese(img, image_shape):
    imgC, imgH, imgW = image_shape
    # todo: change to 0 and modified image shape
T
tink2123 已提交
59
    max_wh_ratio = 0
T
tink2123 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    h, w = img.shape[0], img.shape[1]
    ratio = w * 1.0 / h
    max_wh_ratio = max(max_wh_ratio, ratio)
    imgW = int(32 * max_wh_ratio)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


L
LDOUBLEV 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94
def get_img_data(value):
    """get_img_data"""
    if not value:
        return None
    imgdata = np.frombuffer(value, dtype='uint8')
    if imgdata is None:
        return None
    imgori = cv2.imdecode(imgdata, 1)
    if imgori is None:
        return None
    return imgori


T
tink2123 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def flag():
    """
    flag
    """
    return 1 if random.random() > 0.5000001 else -1


def cvtColor(img):
    """
    cvtColor
    """
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    delta = 0.001 * random.random() * flag()
    hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
    new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    return new_img


def blur(img):
    """
    blur
    """
    h, w, _ = img.shape
    if h > 10 and w > 10:
        return cv2.GaussianBlur(img, (5, 5), 1)
    else:
        return img


T
tink2123 已提交
124
def jitter(img):
T
tink2123 已提交
125
    """
T
tink2123 已提交
126
    jitter
T
tink2123 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140
    """
    w, h, _ = img.shape
    if h > 10 and w > 10:
        thres = min(w, h)
        s = int(random.random() * thres * 0.01)
        src_img = img.copy()
        for i in range(s):
            img[i:, i:, :] = src_img[:w - i, :h - i, :]
        return img
    else:
        return img


def add_gasuss_noise(image, mean=0, var=0.1):
141 142 143
    """
    Gasuss noise
    """
T
tink2123 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

    noise = np.random.normal(mean, var**0.5, image.shape)
    out = image + 0.5 * noise
    out = np.clip(out, 0, 255)
    out = np.uint8(out)
    return out


def get_crop(image):
    """
    random crop
    """
    h, w, _ = image.shape
    top_min = 1
    top_max = 8
    top_crop = int(random.randint(top_min, top_max))
160
    top_crop = min(top_crop, h - 1)
T
tink2123 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    crop_img = image.copy()
    ratio = random.randint(0, 1)
    if ratio:
        crop_img = crop_img[top_crop:h, :, :]
    else:
        crop_img = crop_img[0:h - top_crop, :, :]
    return crop_img


class Config:
    """
    Config
    """

    def __init__(self, ):
        self.anglex = random.random() * 30
        self.angley = random.random() * 15
        self.anglez = random.random() * 10
        self.fov = 42
        self.r = 0
        self.shearx = random.random() * 0.3
        self.sheary = random.random() * 0.05
        self.borderMode = cv2.BORDER_REPLICATE

    def make(self, w, h, ang):
        """
        make
        """
        self.anglex = random.random() * 5 * flag()
        self.angley = random.random() * 5 * flag()
        self.anglez = -1 * random.random() * int(ang) * flag()
        self.fov = 42
        self.r = 0
        self.shearx = 0
        self.sheary = 0
        self.borderMode = cv2.BORDER_REPLICATE
        self.w = w
        self.h = h

        self.perspective = True
littletomatodonkey's avatar
littletomatodonkey 已提交
201 202 203
        self.stretch = True
        self.distort = True

T
tink2123 已提交
204 205 206 207
        self.crop = True
        self.affine = False
        self.reverse = True
        self.noise = True
T
tink2123 已提交
208
        self.jitter = True
T
tink2123 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        self.blur = True
        self.color = True


def rad(x):
    """
    rad
    """
    return x * np.pi / 180


def get_warpR(config):
    """
    get_warpR
    """
    anglex, angley, anglez, fov, w, h, r = \
        config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
    if w > 69 and w < 112:
        anglex = anglex * 1.5

    z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
    # Homogeneous coordinate transformation matrix
    rx = np.array([[1, 0, 0, 0],
                   [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
                       0,
                       -np.sin(rad(anglex)),
                       np.cos(rad(anglex)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
                   [0, 1, 0, 0], [
                       -np.sin(rad(angley)),
                       0,
                       np.cos(rad(angley)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
                   [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
    r = rx.dot(ry).dot(rz)
    # generate 4 points
    pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
    p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
    p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
    p3 = np.array([0, h, 0, 0], np.float32) - pcenter
    p4 = np.array([w, h, 0, 0], np.float32) - pcenter
    dst1 = r.dot(p1)
    dst2 = r.dot(p2)
    dst3 = r.dot(p3)
    dst4 = r.dot(p4)
259
    list_dst = np.array([dst1, dst2, dst3, dst4])
T
tink2123 已提交
260 261 262
    org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
    dst = np.zeros((4, 2), np.float32)
    # Project onto the image plane
263 264 265
    dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
    dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]

T
tink2123 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    warpR = cv2.getPerspectiveTransform(org, dst)

    dst1, dst2, dst3, dst4 = dst
    r1 = int(min(dst1[1], dst2[1]))
    r2 = int(max(dst3[1], dst4[1]))
    c1 = int(min(dst1[0], dst3[0]))
    c2 = int(max(dst2[0], dst4[0]))

    try:
        ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))

        dx = -c1
        dy = -r1
        T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
        ret = T1.dot(warpR)
    except:
        ratio = 1.0
        T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
        ret = T1
    return ret, (-r1, -c1), ratio, dst


def get_warpAffine(config):
    """
    get_warpAffine
    """
    anglez = config.anglez
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
    return rz


def warp(img, ang):
    """
    warp
    """
    h, w, _ = img.shape
    config = Config()
    config.make(w, h, ang)
    new_img = img

littletomatodonkey's avatar
littletomatodonkey 已提交
307 308 309 310 311 312 313 314 315 316 317 318
    prob = 0.4

    if config.distort:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = tia_distort(new_img, random.randint(3, 6))

    if config.stretch:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = tia_stretch(new_img, random.randint(3, 6))

T
tink2123 已提交
319
    if config.perspective:
littletomatodonkey's avatar
littletomatodonkey 已提交
320 321 322
        if random.random() <= prob:
            new_img = tia_perspective(new_img)

T
tink2123 已提交
323 324
    if config.crop:
        img_height, img_width = img.shape[0:2]
littletomatodonkey's avatar
littletomatodonkey 已提交
325
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
T
tink2123 已提交
326
            new_img = get_crop(new_img)
littletomatodonkey's avatar
littletomatodonkey 已提交
327

T
tink2123 已提交
328
    if config.blur:
littletomatodonkey's avatar
littletomatodonkey 已提交
329
        if random.random() <= prob:
T
tink2123 已提交
330 331
            new_img = blur(new_img)
    if config.color:
littletomatodonkey's avatar
littletomatodonkey 已提交
332
        if random.random() <= prob:
T
tink2123 已提交
333
            new_img = cvtColor(new_img)
T
tink2123 已提交
334 335
    if config.jitter:
        new_img = jitter(new_img)
T
tink2123 已提交
336
    if config.noise:
littletomatodonkey's avatar
littletomatodonkey 已提交
337
        if random.random() <= prob:
T
tink2123 已提交
338 339
            new_img = add_gasuss_noise(new_img)
    if config.reverse:
littletomatodonkey's avatar
littletomatodonkey 已提交
340
        if random.random() <= prob:
T
tink2123 已提交
341 342 343 344
            new_img = 255 - new_img
    return new_img


L
LDOUBLEV 已提交
345 346 347 348 349
def process_image(img,
                  image_shape,
                  label=None,
                  char_ops=None,
                  loss_type=None,
T
tink2123 已提交
350
                  max_text_length=None,
T
tink2123 已提交
351
                  tps=None,
T
tink2123 已提交
352 353 354 355
                  infer_mode=False,
                  distort=False):
    if distort:
        img = warp(img, 10)
T
tink2123 已提交
356
    if infer_mode and char_ops.character_type == "ch" and not tps:
T
tink2123 已提交
357
        norm_img = resize_norm_img_chinese(img, image_shape)
T
tink2123 已提交
358 359 360
    else:
        norm_img = resize_norm_img(img, image_shape)

L
LDOUBLEV 已提交
361 362
    norm_img = norm_img[np.newaxis, :]
    if label is not None:
L
LDOUBLEV 已提交
363
        # char_num = char_ops.get_char_num()
L
LDOUBLEV 已提交
364 365
        text = char_ops.encode(label)
        if len(text) == 0 or len(text) > max_text_length:
366
            logger.info(
littletomatodonkey's avatar
littletomatodonkey 已提交
367
                "Warning in ppocr/data/rec/img_tools.py: Wrong data type."
368 369 370
                "Excepted string with length between 1 and {}, but "
                "got '{}'. Label is '{}'".format(max_text_length,
                                                 len(text), label))
L
LDOUBLEV 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
            return None
        else:
            if loss_type == "ctc":
                text = text.reshape(-1, 1)
                return (norm_img, text)
            elif loss_type == "attention":
                beg_flag_idx = char_ops.get_beg_end_flag_idx("beg")
                end_flag_idx = char_ops.get_beg_end_flag_idx("end")
                beg_text = np.append(beg_flag_idx, text)
                end_text = np.append(text, end_flag_idx)
                beg_text = beg_text.reshape(-1, 1)
                end_text = end_text.reshape(-1, 1)
                return (norm_img, beg_text, end_text)
            else:
                assert False, "Unsupport loss_type %s in process_image"\
                    % loss_type
    return (norm_img)
T
tink2123 已提交
388

littletomatodonkey's avatar
littletomatodonkey 已提交
389

T
tink2123 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
def resize_norm_img_srn(img, image_shape):
    imgC, imgH, imgW = image_shape

    img_black = np.zeros((imgH, imgW))
    im_hei = img.shape[0]
    im_wid = img.shape[1]

    if im_wid <= im_hei * 1:
        img_new = cv2.resize(img, (imgH * 1, imgH))
    elif im_wid <= im_hei * 2:
        img_new = cv2.resize(img, (imgH * 2, imgH))
    elif im_wid <= im_hei * 3:
        img_new = cv2.resize(img, (imgH * 3, imgH))
    else:
        img_new = cv2.resize(img, (imgW, imgH))

    img_np = np.asarray(img_new)
    img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
    img_black[:, 0:img_np.shape[1]] = img_np
    img_black = img_black[:, :, np.newaxis]

    row, col, c = img_black.shape
    c = 1

    return np.reshape(img_black, (c, row, col)).astype(np.float32)

littletomatodonkey's avatar
littletomatodonkey 已提交
416 417

def srn_other_inputs(image_shape, num_heads, max_text_length, char_num):
T
tink2123 已提交
418 419 420 421

    imgC, imgH, imgW = image_shape
    feature_dim = int((imgH / 8) * (imgW / 8))

littletomatodonkey's avatar
littletomatodonkey 已提交
422 423 424 425
    encoder_word_pos = np.array(range(0, feature_dim)).reshape(
        (feature_dim, 1)).astype('int64')
    gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
        (max_text_length, 1)).astype('int64')
T
tink2123 已提交
426

littletomatodonkey's avatar
littletomatodonkey 已提交
427 428
    lbl_weight = np.array([int(char_num - 1)] * max_text_length).reshape(
        (-1, 1)).astype('int64')
T
tink2123 已提交
429

littletomatodonkey's avatar
littletomatodonkey 已提交
430 431 432 433 434
    gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
    gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
        [-1, 1, max_text_length, max_text_length])
    gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
                                  [1, num_heads, 1, 1]) * [-1e9]
T
tink2123 已提交
435

littletomatodonkey's avatar
littletomatodonkey 已提交
436 437 438 439
    gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
        [-1, 1, max_text_length, max_text_length])
    gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
                                  [1, num_heads, 1, 1]) * [-1e9]
T
tink2123 已提交
440 441 442 443

    encoder_word_pos = encoder_word_pos[np.newaxis, :]
    gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

littletomatodonkey's avatar
littletomatodonkey 已提交
444 445 446 447 448
    return [
        lbl_weight, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
        gsrm_slf_attn_bias2
    ]

T
tink2123 已提交
449 450 451 452 453 454 455 456 457 458

def process_image_srn(img,
                      image_shape,
                      num_heads,
                      max_text_length,
                      label=None,
                      char_ops=None,
                      loss_type=None):
    norm_img = resize_norm_img_srn(img, image_shape)
    norm_img = norm_img[np.newaxis, :]
T
tink2123 已提交
459 460
    char_num = char_ops.get_char_num()

T
tink2123 已提交
461
    [lbl_weight, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
T
tink2123 已提交
462
        srn_other_inputs(image_shape, num_heads, max_text_length,char_num)
T
tink2123 已提交
463 464 465 466 467 468 469

    if label is not None:
        text = char_ops.encode(label)
        if len(text) == 0 or len(text) > max_text_length:
            return None
        else:
            if loss_type == "srn":
littletomatodonkey's avatar
littletomatodonkey 已提交
470
                text_padded = [int(char_num - 1)] * max_text_length
T
tink2123 已提交
471 472 473 474 475
                for i in range(len(text)):
                    text_padded[i] = text[i]
                    lbl_weight[i] = [1.0]
                text_padded = np.array(text_padded)
                text = text_padded.reshape(-1, 1)
littletomatodonkey's avatar
littletomatodonkey 已提交
476 477
                return (norm_img, text, encoder_word_pos, gsrm_word_pos,
                        gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight)
T
tink2123 已提交
478 479 480
            else:
                assert False, "Unsupport loss_type %s in process_image"\
                    % loss_type
littletomatodonkey's avatar
littletomatodonkey 已提交
481 482
    return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2)