You need to sign in or sign up before continuing.
tps_spatial_transformer.py 6.6 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tink2123 已提交
14 15 16 17
"""
This code is refer from:
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/tps_spatial_transformer.py
"""
T
tink2123 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
import itertools


def grid_sample(input, grid, canvas=None):
    input.stop_gradient = False
    output = F.grid_sample(input, grid)
    if canvas is None:
        return output
    else:
        input_mask = paddle.ones(shape=input.shape)
        output_mask = F.grid_sample(input_mask, grid)
        padded_output = output * output_mask + canvas * (1 - output_mask)
        return padded_output


# phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
def compute_partial_repr(input_points, control_points):
    N = input_points.shape[0]
    M = control_points.shape[0]
    pairwise_diff = paddle.reshape(
        input_points, shape=[N, 1, 2]) - paddle.reshape(
            control_points, shape=[1, M, 2])
    # original implementation, very slow
    # pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
    pairwise_diff_square = pairwise_diff * pairwise_diff
    pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :,
                                                                         1]
    repr_matrix = 0.5 * pairwise_dist * paddle.log(pairwise_dist)
    # fix numerical error for 0 * log(0), substitute all nan with 0
T
tink2123 已提交
56
    mask = np.array(repr_matrix != repr_matrix)
T
tink2123 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    repr_matrix[mask] = 0
    return repr_matrix


# output_ctrl_pts are specified, according to our task.
def build_output_control_points(num_control_points, margins):
    margin_x, margin_y = margins
    num_ctrl_pts_per_side = num_control_points // 2
    ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
    ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
    ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
    ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
    ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
    output_ctrl_pts_arr = np.concatenate(
        [ctrl_pts_top, ctrl_pts_bottom], axis=0)
    output_ctrl_pts = paddle.to_tensor(output_ctrl_pts_arr)
    return output_ctrl_pts


class TPSSpatialTransformer(nn.Layer):
    def __init__(self,
                 output_image_size=None,
                 num_control_points=None,
                 margins=None):
        super(TPSSpatialTransformer, self).__init__()
        self.output_image_size = output_image_size
        self.num_control_points = num_control_points
        self.margins = margins

        self.target_height, self.target_width = output_image_size
        target_control_points = build_output_control_points(num_control_points,
                                                            margins)
        N = num_control_points

        # create padded kernel matrix
        forward_kernel = paddle.zeros(shape=[N + 3, N + 3])
        target_control_partial_repr = compute_partial_repr(
            target_control_points, target_control_points)
        target_control_partial_repr = paddle.cast(target_control_partial_repr,
                                                  forward_kernel.dtype)
        forward_kernel[:N, :N] = target_control_partial_repr
        forward_kernel[:N, -3] = 1
        forward_kernel[-3, :N] = 1
        target_control_points = paddle.cast(target_control_points,
                                            forward_kernel.dtype)
        forward_kernel[:N, -2:] = target_control_points
        forward_kernel[-2:, :N] = paddle.transpose(
            target_control_points, perm=[1, 0])
        # compute inverse matrix
        inverse_kernel = paddle.inverse(forward_kernel)

        # create target cordinate matrix
        HW = self.target_height * self.target_width
        target_coordinate = list(
            itertools.product(
                range(self.target_height), range(self.target_width)))
        target_coordinate = paddle.to_tensor(target_coordinate)  # HW x 2
        Y, X = paddle.split(
            target_coordinate, target_coordinate.shape[1], axis=1)
        Y = Y / (self.target_height - 1)
        X = X / (self.target_width - 1)
        target_coordinate = paddle.concat(
            [X, Y], axis=1)  # convert from (y, x) to (x, y)
        target_coordinate_partial_repr = compute_partial_repr(
            target_coordinate, target_control_points)
        target_coordinate_repr = paddle.concat(
            [
                target_coordinate_partial_repr, paddle.ones(shape=[HW, 1]),
                target_coordinate
            ],
            axis=1)

        # register precomputed matrices
        self.inverse_kernel = inverse_kernel
        self.padding_matrix = paddle.zeros(shape=[3, 2])
        self.target_coordinate_repr = target_coordinate_repr
        self.target_control_points = target_control_points

    def forward(self, input, source_control_points):
        assert source_control_points.ndimension() == 3
        assert source_control_points.shape[1] == self.num_control_points
        assert source_control_points.shape[2] == 2
T
tink2123 已提交
139
        batch_size = paddle.shape(source_control_points)[0]
T
tink2123 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153

        self.padding_matrix = paddle.expand(
            self.padding_matrix, shape=[batch_size, 3, 2])
        Y = paddle.concat([source_control_points, self.padding_matrix], 1)
        mapping_matrix = paddle.matmul(self.inverse_kernel, Y)
        source_coordinate = paddle.matmul(self.target_coordinate_repr,
                                          mapping_matrix)

        grid = paddle.reshape(
            source_coordinate,
            shape=[-1, self.target_height, self.target_width, 2])
        grid = paddle.clip(grid, 0,
                           1)  # the source_control_points may be out of [0, 1].
        # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
T
tink2123 已提交
154
        grid = 2.0 * grid - 1.0
T
tink2123 已提交
155 156
        output_maps = grid_sample(input, grid, canvas=None)
        return output_maps, source_coordinate