tps_spatial_transformer.py 6.5 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
import itertools


def grid_sample(input, grid, canvas=None):
    input.stop_gradient = False
    output = F.grid_sample(input, grid)
    if canvas is None:
        return output
    else:
        input_mask = paddle.ones(shape=input.shape)
        output_mask = F.grid_sample(input_mask, grid)
        padded_output = output * output_mask + canvas * (1 - output_mask)
        return padded_output


# phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
def compute_partial_repr(input_points, control_points):
    N = input_points.shape[0]
    M = control_points.shape[0]
    pairwise_diff = paddle.reshape(
        input_points, shape=[N, 1, 2]) - paddle.reshape(
            control_points, shape=[1, M, 2])
    # original implementation, very slow
    # pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
    pairwise_diff_square = pairwise_diff * pairwise_diff
    pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :,
                                                                         1]
    repr_matrix = 0.5 * pairwise_dist * paddle.log(pairwise_dist)
    # fix numerical error for 0 * log(0), substitute all nan with 0
    mask = repr_matrix != repr_matrix
    repr_matrix[mask] = 0
    return repr_matrix


# output_ctrl_pts are specified, according to our task.
def build_output_control_points(num_control_points, margins):
    margin_x, margin_y = margins
    num_ctrl_pts_per_side = num_control_points // 2
    ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
    ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
    ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
    ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
    ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
    output_ctrl_pts_arr = np.concatenate(
        [ctrl_pts_top, ctrl_pts_bottom], axis=0)
    output_ctrl_pts = paddle.to_tensor(output_ctrl_pts_arr)
    return output_ctrl_pts


class TPSSpatialTransformer(nn.Layer):
    def __init__(self,
                 output_image_size=None,
                 num_control_points=None,
                 margins=None):
        super(TPSSpatialTransformer, self).__init__()
        self.output_image_size = output_image_size
        self.num_control_points = num_control_points
        self.margins = margins

        self.target_height, self.target_width = output_image_size
        target_control_points = build_output_control_points(num_control_points,
                                                            margins)
        N = num_control_points

        # create padded kernel matrix
        forward_kernel = paddle.zeros(shape=[N + 3, N + 3])
        target_control_partial_repr = compute_partial_repr(
            target_control_points, target_control_points)
        target_control_partial_repr = paddle.cast(target_control_partial_repr,
                                                  forward_kernel.dtype)
        forward_kernel[:N, :N] = target_control_partial_repr
        forward_kernel[:N, -3] = 1
        forward_kernel[-3, :N] = 1
        target_control_points = paddle.cast(target_control_points,
                                            forward_kernel.dtype)
        forward_kernel[:N, -2:] = target_control_points
        forward_kernel[-2:, :N] = paddle.transpose(
            target_control_points, perm=[1, 0])
        # compute inverse matrix
        inverse_kernel = paddle.inverse(forward_kernel)

        # create target cordinate matrix
        HW = self.target_height * self.target_width
        target_coordinate = list(
            itertools.product(
                range(self.target_height), range(self.target_width)))
        target_coordinate = paddle.to_tensor(target_coordinate)  # HW x 2
        Y, X = paddle.split(
            target_coordinate, target_coordinate.shape[1], axis=1)
        Y = Y / (self.target_height - 1)
        X = X / (self.target_width - 1)
        target_coordinate = paddle.concat(
            [X, Y], axis=1)  # convert from (y, x) to (x, y)
        target_coordinate_partial_repr = compute_partial_repr(
            target_coordinate, target_control_points)
        target_coordinate_repr = paddle.concat(
            [
                target_coordinate_partial_repr, paddle.ones(shape=[HW, 1]),
                target_coordinate
            ],
            axis=1)

        # register precomputed matrices
        self.inverse_kernel = inverse_kernel
        self.padding_matrix = paddle.zeros(shape=[3, 2])
        self.target_coordinate_repr = target_coordinate_repr
        self.target_control_points = target_control_points

    def forward(self, input, source_control_points):
        assert source_control_points.ndimension() == 3
        assert source_control_points.shape[1] == self.num_control_points
        assert source_control_points.shape[2] == 2
T
tink2123 已提交
135
        batch_size = paddle.shape(source_control_points)[0]
T
tink2123 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149

        self.padding_matrix = paddle.expand(
            self.padding_matrix, shape=[batch_size, 3, 2])
        Y = paddle.concat([source_control_points, self.padding_matrix], 1)
        mapping_matrix = paddle.matmul(self.inverse_kernel, Y)
        source_coordinate = paddle.matmul(self.target_coordinate_repr,
                                          mapping_matrix)

        grid = paddle.reshape(
            source_coordinate,
            shape=[-1, self.target_height, self.target_width, 2])
        grid = paddle.clip(grid, 0,
                           1)  # the source_control_points may be out of [0, 1].
        # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
T
tink2123 已提交
150
        grid = 2.0 * grid - 1.0
T
tink2123 已提交
151 152
        output_maps = grid_sample(input, grid, canvas=None)
        return output_maps, source_coordinate