save_load.py 8.2 KB
Newer Older
L
LDOUBLEV 已提交
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18 19 20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import errno
import os
W
WenmuZhou 已提交
21 22
import pickle
import six
L
LDOUBLEV 已提交
23

W
WenmuZhou 已提交
24
import paddle
L
LDOUBLEV 已提交
25

littletomatodonkey's avatar
littletomatodonkey 已提交
26 27
from ppocr.utils.logging import get_logger

28
__all__ = ['load_model']
L
LDOUBLEV 已提交
29 30


W
WenmuZhou 已提交
31
def _mkdir_if_not_exist(path, logger):
L
LDOUBLEV 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


47
def load_model(config, model, optimizer=None, model_type='det'):
L
LDOUBLEV 已提交
48 49 50
    """
    load model from checkpoint or pretrained_model
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
51
    logger = get_logger()
Y
YukSing 已提交
52 53 54
    global_config = config['Global']
    checkpoints = global_config.get('checkpoints')
    pretrained_model = global_config.get('pretrained_model')
W
WenmuZhou 已提交
55
    best_model_dict = {}
56
    is_float16 = False
57 58
    is_nlp_model = model_type == 'kie' and config["Architecture"][
        "algorithm"] not in ["SDMGR"]
59

60 61
    if is_nlp_model is True:
        # NOTE: for kie model dsitillation, resume training is not supported now
littletomatodonkey's avatar
littletomatodonkey 已提交
62 63
        if config["Architecture"]["algorithm"] in ["Distillation"]:
            return best_model_dict
64
        checkpoints = config['Architecture']['Backbone']['checkpoints']
65
        # load kie method metric
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        if checkpoints:
            if os.path.exists(os.path.join(checkpoints, 'metric.states')):
                with open(os.path.join(checkpoints, 'metric.states'),
                          'rb') as f:
                    states_dict = pickle.load(f) if six.PY2 else pickle.load(
                        f, encoding='latin1')
                best_model_dict = states_dict.get('best_model_dict', {})
                if 'epoch' in states_dict:
                    best_model_dict['start_epoch'] = states_dict['epoch'] + 1
            logger.info("resume from {}".format(checkpoints))

            if optimizer is not None:
                if checkpoints[-1] in ['/', '\\']:
                    checkpoints = checkpoints[:-1]
                if os.path.exists(checkpoints + '.pdopt'):
                    optim_dict = paddle.load(checkpoints + '.pdopt')
                    optimizer.set_state_dict(optim_dict)
                else:
                    logger.warning(
                        "{}.pdopt is not exists, params of optimizer is not loaded".
                        format(checkpoints))
littletomatodonkey's avatar
littletomatodonkey 已提交
87

88 89
        return best_model_dict

L
LDOUBLEV 已提交
90
    if checkpoints:
91
        if checkpoints.endswith('.pdparams'):
92
            checkpoints = checkpoints.replace('.pdparams', '')
93
        assert os.path.exists(checkpoints + ".pdparams"), \
文幕地方's avatar
文幕地方 已提交
94
            "The {}.pdparams does not exists!".format(checkpoints)
95

96 97 98 99 100 101
        # load params from trained model
        params = paddle.load(checkpoints + '.pdparams')
        state_dict = model.state_dict()
        new_state_dict = {}
        for key, value in state_dict.items():
            if key not in params:
102 103
                logger.warning("{} not in loaded params {} !".format(
                    key, params.keys()))
文幕地方's avatar
文幕地方 已提交
104
                continue
105
            pre_value = params[key]
106 107 108
            if pre_value.dtype == paddle.float16:
                pre_value = pre_value.astype(paddle.float32)
                is_float16 = True
109 110 111 112
            if list(value.shape) == list(pre_value.shape):
                new_state_dict[key] = pre_value
            else:
                logger.warning(
113 114
                    "The shape of model params {} {} not matched with loaded params shape {} !".
                    format(key, value.shape, pre_value.shape))
115
        model.set_state_dict(new_state_dict)
116 117 118 119
        if is_float16:
            logger.info(
                "The parameter type is float16, which is converted to float32 when loading"
            )
W
WenmuZhou 已提交
120
        if optimizer is not None:
文幕地方's avatar
文幕地方 已提交
121 122 123 124 125 126 127
            if os.path.exists(checkpoints + '.pdopt'):
                optim_dict = paddle.load(checkpoints + '.pdopt')
                optimizer.set_state_dict(optim_dict)
            else:
                logger.warning(
                    "{}.pdopt is not exists, params of optimizer is not loaded".
                    format(checkpoints))
W
WenmuZhou 已提交
128 129 130 131 132 133 134 135 136 137

        if os.path.exists(checkpoints + '.states'):
            with open(checkpoints + '.states', 'rb') as f:
                states_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
            best_model_dict = states_dict.get('best_model_dict', {})
            if 'epoch' in states_dict:
                best_model_dict['start_epoch'] = states_dict['epoch'] + 1
        logger.info("resume from {}".format(checkpoints))
    elif pretrained_model:
138
        is_float16 = load_pretrained_params(model, pretrained_model)
139
    else:
W
WenmuZhou 已提交
140
        logger.info('train from scratch')
141
    best_model_dict['is_float16'] = is_float16
W
WenmuZhou 已提交
142
    return best_model_dict
L
LDOUBLEV 已提交
143 144


L
fix bug  
LDOUBLEV 已提交
145
def load_pretrained_params(model, path):
146
    logger = get_logger()
147
    if path.endswith('.pdparams'):
148 149
        path = path.replace('.pdparams', '')
    assert os.path.exists(path + ".pdparams"), \
文幕地方's avatar
文幕地方 已提交
150
        "The {}.pdparams does not exists!".format(path)
151 152

    params = paddle.load(path + '.pdparams')
X
xiaoting 已提交
153

L
fix bug  
LDOUBLEV 已提交
154
    state_dict = model.state_dict()
X
xiaoting 已提交
155

L
fix bug  
LDOUBLEV 已提交
156
    new_state_dict = {}
157
    is_float16 = False
158

T
tink2123 已提交
159
    for k1 in params.keys():
X
xiaoting 已提交
160

T
tink2123 已提交
161 162
        if k1 not in state_dict.keys():
            logger.warning("The pretrained params {} not in model".format(k1))
L
LDOUBLEV 已提交
163
        else:
164 165 166
            if params[k1].dtype == paddle.float16:
                params[k1] = params[k1].astype(paddle.float32)
                is_float16 = True
T
tink2123 已提交
167 168 169 170 171 172
            if list(state_dict[k1].shape) == list(params[k1].shape):
                new_state_dict[k1] = params[k1]
            else:
                logger.warning(
                    "The shape of model params {} {} not matched with loaded params {} {} !".
                    format(k1, state_dict[k1].shape, k1, params[k1].shape))
173

L
fix bug  
LDOUBLEV 已提交
174
    model.set_state_dict(new_state_dict)
175 176 177 178
    if is_float16:
        logger.info(
            "The parameter type is float16, which is converted to float32 when loading"
        )
179
    logger.info("load pretrain successful from {}".format(path))
180
    return is_float16
D
Double_V 已提交
181

182

183
def save_model(model,
W
WenmuZhou 已提交
184 185 186
               optimizer,
               model_path,
               logger,
187
               config,
W
WenmuZhou 已提交
188 189 190
               is_best=False,
               prefix='ppocr',
               **kwargs):
L
LDOUBLEV 已提交
191 192 193
    """
    save model to the target path
    """
W
WenmuZhou 已提交
194 195
    _mkdir_if_not_exist(model_path, logger)
    model_prefix = os.path.join(model_path, prefix)
littletomatodonkey's avatar
littletomatodonkey 已提交
196
    paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
197 198 199

    is_nlp_model = config['Architecture']["model_type"] == 'kie' and config[
        "Architecture"]["algorithm"] not in ["SDMGR"]
200
    if is_nlp_model is not True:
201 202
        paddle.save(model.state_dict(), model_prefix + '.pdparams')
        metric_prefix = model_prefix
203
    else:  # for kie system, we follow the save/load rules in NLP
204
        if config['Global']['distributed']:
littletomatodonkey's avatar
littletomatodonkey 已提交
205
            arch = model._layers
206
        else:
littletomatodonkey's avatar
littletomatodonkey 已提交
207 208 209 210
            arch = model
        if config["Architecture"]["algorithm"] in ["Distillation"]:
            arch = arch.Student
        arch.backbone.model.save_pretrained(model_prefix)
211
        metric_prefix = os.path.join(model_prefix, 'metric')
W
WenmuZhou 已提交
212
    # save metric and config
Z
zhoujun 已提交
213 214
    with open(metric_prefix + '.states', 'wb') as f:
        pickle.dump(kwargs, f, protocol=2)
W
WenmuZhou 已提交
215 216 217 218
    if is_best:
        logger.info('save best model is to {}'.format(model_prefix))
    else:
        logger.info("save model in {}".format(model_prefix))