basic_loss.py 4.0 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddle.nn import L1Loss
from paddle.nn import MSELoss as L2Loss
from paddle.nn import SmoothL1Loss


class CELoss(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
25
    def __init__(self, epsilon=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        super().__init__()
        if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
            epsilon = None
        self.epsilon = epsilon

    def _labelsmoothing(self, target, class_num):
        if target.shape[-1] != class_num:
            one_hot_target = F.one_hot(target, class_num)
        else:
            one_hot_target = target
        soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
        soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
        return soft_target

    def forward(self, x, label):
        loss_dict = {}
        if self.epsilon is not None:
            class_num = x.shape[-1]
            label = self._labelsmoothing(label, class_num)
            x = -F.log_softmax(x, axis=-1)
            loss = paddle.sum(x * label, axis=-1)
        else:
            if label.shape[-1] == x.shape[-1]:
                label = F.softmax(label, axis=-1)
                soft_label = True
            else:
                soft_label = False
            loss = F.cross_entropy(x, label=label, soft_label=soft_label)
littletomatodonkey's avatar
littletomatodonkey 已提交
54
        return loss
littletomatodonkey's avatar
littletomatodonkey 已提交
55 56


L
LDOUBLEV 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
class KLJSLoss(object):
    def __init__(self, mode='kl'):
        assert mode in ['kl', 'js', 'KL', 'JS'], "mode can only be one of ['kl', 'js', 'KL', 'JS']"
        self.mode = mode

    def __call__(self, p1, p2, reduction="mean"):

        loss = paddle.multiply(p2, paddle.log( (p2+1e-5)/(p1+1e-5) + 1e-5))

        if self.mode.lower() == "js":
            loss += paddle.multiply(p1, paddle.log((p1+1e-5)/(p2+1e-5) + 1e-5))
            loss *= 0.5
        if reduction == "mean":
            loss = paddle.mean(loss, axis=[1,2])
        elif reduction=="none" or reduction is None:
            return loss 
        else:
            loss = paddle.sum(loss, axis=[1,2])

        return loss 

littletomatodonkey's avatar
littletomatodonkey 已提交
78 79 80 81 82
class DMLLoss(nn.Layer):
    """
    DMLLoss
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
83
    def __init__(self, act=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
84
        super().__init__()
85 86 87 88 89 90 91 92
        if act is not None:
            assert act in ["softmax", "sigmoid"]
        if act == "softmax":
            self.act = nn.Softmax(axis=-1)
        elif act == "sigmoid":
            self.act = nn.Sigmoid()
        else:
            self.act = None
L
LDOUBLEV 已提交
93 94
        
        self.jskl_loss = KLJSLoss(mode="js")
littletomatodonkey's avatar
littletomatodonkey 已提交
95 96

    def forward(self, out1, out2):
97 98 99
        if self.act is not None:
            out1 = self.act(out1)
            out2 = self.act(out2)
L
LDOUBLEV 已提交
100 101 102 103 104 105 106 107
        if len(out1.shape) < 2:
            log_out1 = paddle.log(out1)
            log_out2 = paddle.log(out2)
            loss = (F.kl_div(
                log_out1, out2, reduction='batchmean') + F.kl_div(
                    log_out2, out1, reduction='batchmean')) / 2.0
        else:
            loss = self.jskl_loss(out1, out2)
littletomatodonkey's avatar
littletomatodonkey 已提交
108
        return loss
littletomatodonkey's avatar
littletomatodonkey 已提交
109 110 111 112 113 114 115 116


class DistanceLoss(nn.Layer):
    """
    DistanceLoss:
        mode: loss mode
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
117
    def __init__(self, mode="l2", **kargs):
118
        super().__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
119 120 121
        assert mode in ["l1", "l2", "smooth_l1"]
        if mode == "l1":
            self.loss_func = nn.L1Loss(**kargs)
122
        elif mode == "l2":
littletomatodonkey's avatar
littletomatodonkey 已提交
123 124 125 126 127
            self.loss_func = nn.MSELoss(**kargs)
        elif mode == "smooth_l1":
            self.loss_func = nn.SmoothL1Loss(**kargs)

    def forward(self, x, y):
littletomatodonkey's avatar
littletomatodonkey 已提交
128
        return self.loss_func(x, y)