未验证 提交 cb817fd9 编写于 作者: jm_12138's avatar jm_12138 提交者: GitHub

update fix_resnext101_32x48d_wsl_imagenet (#2042)

上级 57d97730
...@@ -129,6 +129,11 @@ ...@@ -129,6 +129,11 @@
* 1.0.0 * 1.0.0
初始发布 初始发布
* 1.1.0
移除 Fluid API
- ```shell - ```shell
$ hub install fix_resnext101_32x48d_wsl_imagenet==1.0.0 $ hub install fix_resnext101_32x48d_wsl_imagenet==1.1.0
``` ```
...@@ -129,6 +129,11 @@ ...@@ -129,6 +129,11 @@
* 1.0.0 * 1.0.0
First release First release
* 1.1.0
Remove Fluid API
- ```shell - ```shell
$ hub install fix_resnext101_32x48d_wsl_imagenet==1.0.0 $ hub install fix_resnext101_32x48d_wsl_imagenet==1.1.0
``` ```
# coding=utf-8
import os import os
import time import time
from collections import OrderedDict from collections import OrderedDict
import cv2
import numpy as np import numpy as np
from PIL import Image from PIL import Image
......
# coding=utf-8
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
import ast
import argparse import argparse
import ast
import os import os
import numpy as np import numpy as np
import paddle.fluid as fluid from paddle.inference import Config
import paddlehub as hub from paddle.inference import create_predictor
from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
from paddlehub.module.module import moduleinfo, runnable, serving
from paddlehub.common.paddle_helper import add_vars_prefix
from fix_resnext101_32x48d_wsl_imagenet.processor import postprocess, base64_to_cv2 from .data_feed import reader
from fix_resnext101_32x48d_wsl_imagenet.data_feed import reader from .processor import base64_to_cv2
from fix_resnext101_32x48d_wsl_imagenet.resnext101_wsl import Fix_ResNeXt101_32x48d_wsl from .processor import postprocess
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
@moduleinfo( @moduleinfo(
...@@ -24,10 +23,11 @@ from fix_resnext101_32x48d_wsl_imagenet.resnext101_wsl import Fix_ResNeXt101_32x ...@@ -24,10 +23,11 @@ from fix_resnext101_32x48d_wsl_imagenet.resnext101_wsl import Fix_ResNeXt101_32x
author="paddlepaddle", author="paddlepaddle",
author_email="paddle-dev@baidu.com", author_email="paddle-dev@baidu.com",
summary="fix_resnext101_32x48d_wsl is a image classfication model, this module is trained with imagenet datasets.", summary="fix_resnext101_32x48d_wsl is a image classfication model, this module is trained with imagenet datasets.",
version="1.0.0") version="1.1.0")
class FixResnext10132x48dwslImagenet(hub.Module): class FixResnext10132x48dwslImagenet:
def _initialize(self):
self.default_pretrained_model_path = os.path.join(self.directory, "model") def __init__(self):
self.default_pretrained_model_path = os.path.join(self.directory, "model", "model")
label_file = os.path.join(self.directory, "label_list.txt") label_file = os.path.join(self.directory, "label_list.txt")
with open(label_file, 'r', encoding='utf-8') as file: with open(label_file, 'r', encoding='utf-8') as file:
self.label_list = file.read().split("\n")[:-1] self.label_list = file.read().split("\n")[:-1]
...@@ -51,10 +51,12 @@ class FixResnext10132x48dwslImagenet(hub.Module): ...@@ -51,10 +51,12 @@ class FixResnext10132x48dwslImagenet(hub.Module):
""" """
predictor config setting predictor config setting
""" """
cpu_config = AnalysisConfig(self.default_pretrained_model_path) model = self.default_pretrained_model_path + '.pdmodel'
params = self.default_pretrained_model_path + '.pdiparams'
cpu_config = Config(model, params)
cpu_config.disable_glog_info() cpu_config.disable_glog_info()
cpu_config.disable_gpu() cpu_config.disable_gpu()
self.cpu_predictor = create_paddle_predictor(cpu_config) self.cpu_predictor = create_predictor(cpu_config)
try: try:
_places = os.environ["CUDA_VISIBLE_DEVICES"] _places = os.environ["CUDA_VISIBLE_DEVICES"]
...@@ -63,58 +65,10 @@ class FixResnext10132x48dwslImagenet(hub.Module): ...@@ -63,58 +65,10 @@ class FixResnext10132x48dwslImagenet(hub.Module):
except: except:
use_gpu = False use_gpu = False
if use_gpu: if use_gpu:
gpu_config = AnalysisConfig(self.default_pretrained_model_path) gpu_config = Config(model, params)
gpu_config.disable_glog_info() gpu_config.disable_glog_info()
gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0) gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
self.gpu_predictor = create_paddle_predictor(gpu_config) self.gpu_predictor = create_predictor(gpu_config)
def context(self, trainable=True, pretrained=True):
"""context for transfer learning.
Args:
trainable (bool): Set parameters in program to be trainable.
pretrained (bool) : Whether to load pretrained model.
Returns:
inputs (dict): key is 'image', corresponding vaule is image tensor.
outputs (dict): key is :
'classification', corresponding value is the result of classification.
'feature_map', corresponding value is the result of the layer before the fully connected layer.
context_prog (fluid.Program): program for transfer learning.
"""
context_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(context_prog, startup_prog):
with fluid.unique_name.guard():
image = fluid.layers.data(name="image", shape=[3, 224, 224], dtype="float32")
resnet_vd = Fix_ResNeXt101_32x48d_wsl()
output, feature_map = resnet_vd.net(input=image, class_dim=len(self.label_list))
name_prefix = '@HUB_{}@'.format(self.name)
inputs = {'image': name_prefix + image.name}
outputs = {'classification': name_prefix + output.name, 'feature_map': name_prefix + feature_map.name}
add_vars_prefix(context_prog, name_prefix)
add_vars_prefix(startup_prog, name_prefix)
global_vars = context_prog.global_block().vars
inputs = {key: global_vars[value] for key, value in inputs.items()}
outputs = {key: global_vars[value] for key, value in outputs.items()}
place = fluid.CPUPlace()
exe = fluid.Executor(place)
# pretrained
if pretrained:
def _if_exist(var):
b = os.path.exists(os.path.join(self.default_pretrained_model_path, var.name))
return b
fluid.io.load_vars(exe, self.default_pretrained_model_path, context_prog, predicate=_if_exist)
else:
exe.run(startup_prog)
# trainable
for param in context_prog.global_block().iter_parameters():
param.trainable = trainable
return inputs, outputs, context_prog
def classification(self, images=None, paths=None, batch_size=1, use_gpu=False, top_k=1): def classification(self, images=None, paths=None, batch_size=1, use_gpu=False, top_k=1):
""" """
...@@ -136,7 +90,7 @@ class FixResnext10132x48dwslImagenet(hub.Module): ...@@ -136,7 +90,7 @@ class FixResnext10132x48dwslImagenet(hub.Module):
int(_places[0]) int(_places[0])
except: except:
raise RuntimeError( raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
) )
if not self.predictor_set: if not self.predictor_set:
...@@ -161,32 +115,19 @@ class FixResnext10132x48dwslImagenet(hub.Module): ...@@ -161,32 +115,19 @@ class FixResnext10132x48dwslImagenet(hub.Module):
pass pass
# feed batch image # feed batch image
batch_image = np.array([data['image'] for data in batch_data]) batch_image = np.array([data['image'] for data in batch_data])
batch_image = PaddleTensor(batch_image.copy())
predictor_output = self.gpu_predictor.run([batch_image]) if use_gpu else self.cpu_predictor.run( predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
[batch_image]) input_names = predictor.get_input_names()
out = postprocess(data_out=predictor_output[0].as_ndarray(), label_list=self.label_list, top_k=top_k) input_handle = predictor.get_input_handle(input_names[0])
input_handle.copy_from_cpu(batch_image.copy())
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[0])
out = postprocess(data_out=output_handle.copy_to_cpu(), label_list=self.label_list, top_k=top_k)
res += out res += out
return res return res
def save_inference_model(self, dirname, model_filename=None, params_filename=None, combined=True):
if combined:
model_filename = "__model__" if not model_filename else model_filename
params_filename = "__params__" if not params_filename else params_filename
place = fluid.CPUPlace()
exe = fluid.Executor(place)
program, feeded_var_names, target_vars = fluid.io.load_inference_model(
dirname=self.default_pretrained_model_path, executor=exe)
fluid.io.save_inference_model(
dirname=dirname,
main_program=program,
executor=exe,
feeded_var_names=feeded_var_names,
target_vars=target_vars,
model_filename=model_filename,
params_filename=params_filename)
@serving @serving
def serving_method(self, images, **kwargs): def serving_method(self, images, **kwargs):
""" """
...@@ -201,11 +142,10 @@ class FixResnext10132x48dwslImagenet(hub.Module): ...@@ -201,11 +142,10 @@ class FixResnext10132x48dwslImagenet(hub.Module):
""" """
Run as a command. Run as a command.
""" """
self.parser = argparse.ArgumentParser( self.parser = argparse.ArgumentParser(description="Run the {} module.".format(self.name),
description="Run the {} module.".format(self.name), prog='hub run {}'.format(self.name),
prog='hub run {}'.format(self.name), usage='%(prog)s',
usage='%(prog)s', add_help=True)
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required") self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group( self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.") title="Config options", description="Run configuration for controlling module behavior, not required.")
...@@ -219,8 +159,10 @@ class FixResnext10132x48dwslImagenet(hub.Module): ...@@ -219,8 +159,10 @@ class FixResnext10132x48dwslImagenet(hub.Module):
""" """
Add the command config options. Add the command config options.
""" """
self.arg_config_group.add_argument( self.arg_config_group.add_argument('--use_gpu',
'--use_gpu', type=ast.literal_eval, default=False, help="whether use GPU or not.") type=ast.literal_eval,
default=False,
help="whether use GPU or not.")
self.arg_config_group.add_argument('--batch_size', type=ast.literal_eval, default=1, help="batch size.") self.arg_config_group.add_argument('--batch_size', type=ast.literal_eval, default=1, help="batch size.")
self.arg_config_group.add_argument('--top_k', type=ast.literal_eval, default=1, help="Return top k results.") self.arg_config_group.add_argument('--top_k', type=ast.literal_eval, default=1, help="Return top k results.")
......
# coding=utf-8
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import base64 import base64
import cv2
import os
import cv2
import numpy as np import numpy as np
...@@ -18,7 +16,6 @@ def base64_to_cv2(b64str): ...@@ -18,7 +16,6 @@ def base64_to_cv2(b64str):
def softmax(x): def softmax(x):
orig_shape = x.shape
if len(x.shape) > 1: if len(x.shape) > 1:
tmp = np.max(x, axis=1) tmp = np.max(x, axis=1)
x -= tmp.reshape((x.shape[0], 1)) x -= tmp.reshape((x.shape[0], 1))
......
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import math
from paddle.fluid.param_attr import ParamAttr
__all__ = [
"ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl", "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
"Fix_ResNeXt101_32x48d_wsl"
]
class ResNeXt101_wsl():
def __init__(self, layers=101, cardinality=32, width=48):
self.layers = layers
self.cardinality = cardinality
self.width = width
def net(self, input, class_dim=1000):
layers = self.layers
cardinality = self.cardinality
width = self.width
depth = [3, 4, 23, 3]
base_width = cardinality * width
num_filters = [base_width * i for i in [1, 2, 4, 8]]
conv = self.conv_bn_layer(
input=input, num_filters=64, filter_size=7, stride=2, act='relu', name="conv1") #debug
conv = fluid.layers.pool2d(input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
for block in range(len(depth)):
for i in range(depth[block]):
conv_name = 'layer' + str(block + 1) + "." + str(i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
name=conv_name)
pool = fluid.layers.pool2d(input=conv, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(initializer=fluid.initializer.Uniform(-stdv, stdv), name='fc.weight'),
bias_attr=fluid.param_attr.ParamAttr(name='fc.bias'))
return out, pool
def conv_bn_layer(self, input, num_filters, filter_size, stride=1, groups=1, act=None, name=None):
if "downsample" in name:
conv_name = name + '.0'
else:
conv_name = name
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=conv_name + ".weight"),
bias_attr=False)
if "downsample" in name:
bn_name = name[:9] + 'downsample' + '.1'
else:
if "conv1" == name:
bn_name = 'bn' + name[-1]
else:
bn_name = (name[:10] if name[7:9].isdigit() else name[:9]) + 'bn' + name[-1]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '.weight'),
bias_attr=ParamAttr(bn_name + '.bias'),
moving_mean_name=bn_name + '.running_mean',
moving_variance_name=bn_name + '.running_var',
)
def shortcut(self, input, ch_out, stride, name):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, cardinality, name):
cardinality = self.cardinality
width = self.width
conv0 = self.conv_bn_layer(
input=input, num_filters=num_filters, filter_size=1, act='relu', name=name + ".conv1")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
groups=cardinality,
act='relu',
name=name + ".conv2")
conv2 = self.conv_bn_layer(
input=conv1, num_filters=num_filters // (width // 8), filter_size=1, act=None, name=name + ".conv3")
short = self.shortcut(input, num_filters // (width // 8), stride, name=name + ".downsample")
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def ResNeXt101_32x8d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=8)
return model
def ResNeXt101_32x16d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=16)
return model
def ResNeXt101_32x32d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=32)
return model
def ResNeXt101_32x48d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=48)
return model
def Fix_ResNeXt101_32x48d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=48)
return model
import os
import shutil
import unittest
import cv2
import requests
import paddlehub as hub
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
class TestHubModule(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
img_url = 'https://unsplash.com/photos/brFsZ7qszSY/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8OHx8ZG9nfGVufDB8fHx8MTY2MzA1ODQ1MQ&force=true&w=640'
if not os.path.exists('tests'):
os.makedirs('tests')
response = requests.get(img_url)
assert response.status_code == 200, 'Network Error.'
with open('tests/test.jpg', 'wb') as f:
f.write(response.content)
cls.module = hub.Module(name="fix_resnext101_32x48d_wsl_imagenet")
@classmethod
def tearDownClass(cls) -> None:
shutil.rmtree('tests')
shutil.rmtree('inference')
def test_classification1(self):
results = self.module.classification(paths=['tests/test.jpg'])
data = results[0]
self.assertTrue('Pembroke' in data)
self.assertTrue(data['Pembroke'] > 0.5)
def test_classification2(self):
results = self.module.classification(images=[cv2.imread('tests/test.jpg')])
data = results[0]
self.assertTrue('Pembroke' in data)
self.assertTrue(data['Pembroke'] > 0.5)
def test_classification3(self):
results = self.module.classification(images=[cv2.imread('tests/test.jpg')], use_gpu=True)
data = results[0]
self.assertTrue('Pembroke' in data)
self.assertTrue(data['Pembroke'] > 0.5)
def test_classification4(self):
self.assertRaises(AssertionError, self.module.classification, paths=['no.jpg'])
def test_classification5(self):
self.assertRaises(TypeError, self.module.classification, images=['tests/test.jpg'])
def test_save_inference_model(self):
self.module.save_inference_model('./inference/model')
self.assertTrue(os.path.exists('./inference/model.pdmodel'))
self.assertTrue(os.path.exists('./inference/model.pdiparams'))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册