未验证 提交 cb817fd9 编写于 作者: jm_12138's avatar jm_12138 提交者: GitHub

update fix_resnext101_32x48d_wsl_imagenet (#2042)

上级 57d97730
......@@ -129,6 +129,11 @@
* 1.0.0
初始发布
* 1.1.0
移除 Fluid API
- ```shell
$ hub install fix_resnext101_32x48d_wsl_imagenet==1.0.0
$ hub install fix_resnext101_32x48d_wsl_imagenet==1.1.0
```
......@@ -129,6 +129,11 @@
* 1.0.0
First release
* 1.1.0
Remove Fluid API
- ```shell
$ hub install fix_resnext101_32x48d_wsl_imagenet==1.0.0
$ hub install fix_resnext101_32x48d_wsl_imagenet==1.1.0
```
# coding=utf-8
import os
import time
from collections import OrderedDict
import cv2
import numpy as np
from PIL import Image
......
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
import ast
import argparse
import ast
import os
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
from paddlehub.module.module import moduleinfo, runnable, serving
from paddlehub.common.paddle_helper import add_vars_prefix
from paddle.inference import Config
from paddle.inference import create_predictor
from fix_resnext101_32x48d_wsl_imagenet.processor import postprocess, base64_to_cv2
from fix_resnext101_32x48d_wsl_imagenet.data_feed import reader
from fix_resnext101_32x48d_wsl_imagenet.resnext101_wsl import Fix_ResNeXt101_32x48d_wsl
from .data_feed import reader
from .processor import base64_to_cv2
from .processor import postprocess
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
@moduleinfo(
......@@ -24,10 +23,11 @@ from fix_resnext101_32x48d_wsl_imagenet.resnext101_wsl import Fix_ResNeXt101_32x
author="paddlepaddle",
author_email="paddle-dev@baidu.com",
summary="fix_resnext101_32x48d_wsl is a image classfication model, this module is trained with imagenet datasets.",
version="1.0.0")
class FixResnext10132x48dwslImagenet(hub.Module):
def _initialize(self):
self.default_pretrained_model_path = os.path.join(self.directory, "model")
version="1.1.0")
class FixResnext10132x48dwslImagenet:
def __init__(self):
self.default_pretrained_model_path = os.path.join(self.directory, "model", "model")
label_file = os.path.join(self.directory, "label_list.txt")
with open(label_file, 'r', encoding='utf-8') as file:
self.label_list = file.read().split("\n")[:-1]
......@@ -51,10 +51,12 @@ class FixResnext10132x48dwslImagenet(hub.Module):
"""
predictor config setting
"""
cpu_config = AnalysisConfig(self.default_pretrained_model_path)
model = self.default_pretrained_model_path + '.pdmodel'
params = self.default_pretrained_model_path + '.pdiparams'
cpu_config = Config(model, params)
cpu_config.disable_glog_info()
cpu_config.disable_gpu()
self.cpu_predictor = create_paddle_predictor(cpu_config)
self.cpu_predictor = create_predictor(cpu_config)
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
......@@ -63,58 +65,10 @@ class FixResnext10132x48dwslImagenet(hub.Module):
except:
use_gpu = False
if use_gpu:
gpu_config = AnalysisConfig(self.default_pretrained_model_path)
gpu_config = Config(model, params)
gpu_config.disable_glog_info()
gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
self.gpu_predictor = create_paddle_predictor(gpu_config)
def context(self, trainable=True, pretrained=True):
"""context for transfer learning.
Args:
trainable (bool): Set parameters in program to be trainable.
pretrained (bool) : Whether to load pretrained model.
Returns:
inputs (dict): key is 'image', corresponding vaule is image tensor.
outputs (dict): key is :
'classification', corresponding value is the result of classification.
'feature_map', corresponding value is the result of the layer before the fully connected layer.
context_prog (fluid.Program): program for transfer learning.
"""
context_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(context_prog, startup_prog):
with fluid.unique_name.guard():
image = fluid.layers.data(name="image", shape=[3, 224, 224], dtype="float32")
resnet_vd = Fix_ResNeXt101_32x48d_wsl()
output, feature_map = resnet_vd.net(input=image, class_dim=len(self.label_list))
name_prefix = '@HUB_{}@'.format(self.name)
inputs = {'image': name_prefix + image.name}
outputs = {'classification': name_prefix + output.name, 'feature_map': name_prefix + feature_map.name}
add_vars_prefix(context_prog, name_prefix)
add_vars_prefix(startup_prog, name_prefix)
global_vars = context_prog.global_block().vars
inputs = {key: global_vars[value] for key, value in inputs.items()}
outputs = {key: global_vars[value] for key, value in outputs.items()}
place = fluid.CPUPlace()
exe = fluid.Executor(place)
# pretrained
if pretrained:
def _if_exist(var):
b = os.path.exists(os.path.join(self.default_pretrained_model_path, var.name))
return b
fluid.io.load_vars(exe, self.default_pretrained_model_path, context_prog, predicate=_if_exist)
else:
exe.run(startup_prog)
# trainable
for param in context_prog.global_block().iter_parameters():
param.trainable = trainable
return inputs, outputs, context_prog
self.gpu_predictor = create_predictor(gpu_config)
def classification(self, images=None, paths=None, batch_size=1, use_gpu=False, top_k=1):
"""
......@@ -136,7 +90,7 @@ class FixResnext10132x48dwslImagenet(hub.Module):
int(_places[0])
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
"Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
)
if not self.predictor_set:
......@@ -161,32 +115,19 @@ class FixResnext10132x48dwslImagenet(hub.Module):
pass
# feed batch image
batch_image = np.array([data['image'] for data in batch_data])
batch_image = PaddleTensor(batch_image.copy())
predictor_output = self.gpu_predictor.run([batch_image]) if use_gpu else self.cpu_predictor.run(
[batch_image])
out = postprocess(data_out=predictor_output[0].as_ndarray(), label_list=self.label_list, top_k=top_k)
predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
input_handle.copy_from_cpu(batch_image.copy())
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[0])
out = postprocess(data_out=output_handle.copy_to_cpu(), label_list=self.label_list, top_k=top_k)
res += out
return res
def save_inference_model(self, dirname, model_filename=None, params_filename=None, combined=True):
if combined:
model_filename = "__model__" if not model_filename else model_filename
params_filename = "__params__" if not params_filename else params_filename
place = fluid.CPUPlace()
exe = fluid.Executor(place)
program, feeded_var_names, target_vars = fluid.io.load_inference_model(
dirname=self.default_pretrained_model_path, executor=exe)
fluid.io.save_inference_model(
dirname=dirname,
main_program=program,
executor=exe,
feeded_var_names=feeded_var_names,
target_vars=target_vars,
model_filename=model_filename,
params_filename=params_filename)
@serving
def serving_method(self, images, **kwargs):
"""
......@@ -201,11 +142,10 @@ class FixResnext10132x48dwslImagenet(hub.Module):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(
description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.parser = argparse.ArgumentParser(description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
......@@ -219,8 +159,10 @@ class FixResnext10132x48dwslImagenet(hub.Module):
"""
Add the command config options.
"""
self.arg_config_group.add_argument(
'--use_gpu', type=ast.literal_eval, default=False, help="whether use GPU or not.")
self.arg_config_group.add_argument('--use_gpu',
type=ast.literal_eval,
default=False,
help="whether use GPU or not.")
self.arg_config_group.add_argument('--batch_size', type=ast.literal_eval, default=1, help="batch size.")
self.arg_config_group.add_argument('--top_k', type=ast.literal_eval, default=1, help="Return top k results.")
......
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import base64
import cv2
import os
import cv2
import numpy as np
......@@ -18,7 +16,6 @@ def base64_to_cv2(b64str):
def softmax(x):
orig_shape = x.shape
if len(x.shape) > 1:
tmp = np.max(x, axis=1)
x -= tmp.reshape((x.shape[0], 1))
......
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import math
from paddle.fluid.param_attr import ParamAttr
__all__ = [
"ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl", "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
"Fix_ResNeXt101_32x48d_wsl"
]
class ResNeXt101_wsl():
def __init__(self, layers=101, cardinality=32, width=48):
self.layers = layers
self.cardinality = cardinality
self.width = width
def net(self, input, class_dim=1000):
layers = self.layers
cardinality = self.cardinality
width = self.width
depth = [3, 4, 23, 3]
base_width = cardinality * width
num_filters = [base_width * i for i in [1, 2, 4, 8]]
conv = self.conv_bn_layer(
input=input, num_filters=64, filter_size=7, stride=2, act='relu', name="conv1") #debug
conv = fluid.layers.pool2d(input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
for block in range(len(depth)):
for i in range(depth[block]):
conv_name = 'layer' + str(block + 1) + "." + str(i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
name=conv_name)
pool = fluid.layers.pool2d(input=conv, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(initializer=fluid.initializer.Uniform(-stdv, stdv), name='fc.weight'),
bias_attr=fluid.param_attr.ParamAttr(name='fc.bias'))
return out, pool
def conv_bn_layer(self, input, num_filters, filter_size, stride=1, groups=1, act=None, name=None):
if "downsample" in name:
conv_name = name + '.0'
else:
conv_name = name
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=conv_name + ".weight"),
bias_attr=False)
if "downsample" in name:
bn_name = name[:9] + 'downsample' + '.1'
else:
if "conv1" == name:
bn_name = 'bn' + name[-1]
else:
bn_name = (name[:10] if name[7:9].isdigit() else name[:9]) + 'bn' + name[-1]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '.weight'),
bias_attr=ParamAttr(bn_name + '.bias'),
moving_mean_name=bn_name + '.running_mean',
moving_variance_name=bn_name + '.running_var',
)
def shortcut(self, input, ch_out, stride, name):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, cardinality, name):
cardinality = self.cardinality
width = self.width
conv0 = self.conv_bn_layer(
input=input, num_filters=num_filters, filter_size=1, act='relu', name=name + ".conv1")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
groups=cardinality,
act='relu',
name=name + ".conv2")
conv2 = self.conv_bn_layer(
input=conv1, num_filters=num_filters // (width // 8), filter_size=1, act=None, name=name + ".conv3")
short = self.shortcut(input, num_filters // (width // 8), stride, name=name + ".downsample")
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def ResNeXt101_32x8d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=8)
return model
def ResNeXt101_32x16d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=16)
return model
def ResNeXt101_32x32d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=32)
return model
def ResNeXt101_32x48d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=48)
return model
def Fix_ResNeXt101_32x48d_wsl():
model = ResNeXt101_wsl(cardinality=32, width=48)
return model
import os
import shutil
import unittest
import cv2
import requests
import paddlehub as hub
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
class TestHubModule(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
img_url = 'https://unsplash.com/photos/brFsZ7qszSY/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8OHx8ZG9nfGVufDB8fHx8MTY2MzA1ODQ1MQ&force=true&w=640'
if not os.path.exists('tests'):
os.makedirs('tests')
response = requests.get(img_url)
assert response.status_code == 200, 'Network Error.'
with open('tests/test.jpg', 'wb') as f:
f.write(response.content)
cls.module = hub.Module(name="fix_resnext101_32x48d_wsl_imagenet")
@classmethod
def tearDownClass(cls) -> None:
shutil.rmtree('tests')
shutil.rmtree('inference')
def test_classification1(self):
results = self.module.classification(paths=['tests/test.jpg'])
data = results[0]
self.assertTrue('Pembroke' in data)
self.assertTrue(data['Pembroke'] > 0.5)
def test_classification2(self):
results = self.module.classification(images=[cv2.imread('tests/test.jpg')])
data = results[0]
self.assertTrue('Pembroke' in data)
self.assertTrue(data['Pembroke'] > 0.5)
def test_classification3(self):
results = self.module.classification(images=[cv2.imread('tests/test.jpg')], use_gpu=True)
data = results[0]
self.assertTrue('Pembroke' in data)
self.assertTrue(data['Pembroke'] > 0.5)
def test_classification4(self):
self.assertRaises(AssertionError, self.module.classification, paths=['no.jpg'])
def test_classification5(self):
self.assertRaises(TypeError, self.module.classification, images=['tests/test.jpg'])
def test_save_inference_model(self):
self.module.save_inference_model('./inference/model')
self.assertTrue(os.path.exists('./inference/model.pdmodel'))
self.assertTrue(os.path.exists('./inference/model.pdiparams'))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册