Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
a2f8f1ac
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a2f8f1ac
编写于
3月 14, 2022
作者:
K
KP
提交者:
GitHub
3月 14, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1714 from rainyfly/add_lapstyle_circuit
add lapstyle_circuit module
上级
da23fe51
a5a6cdc9
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
444 addition
and
0 deletion
+444
-0
modules/image/Image_gan/style_transfer/lapstyle_circuit/README.md
...image/Image_gan/style_transfer/lapstyle_circuit/README.md
+142
-0
modules/image/Image_gan/style_transfer/lapstyle_circuit/model.py
.../image/Image_gan/style_transfer/lapstyle_circuit/model.py
+140
-0
modules/image/Image_gan/style_transfer/lapstyle_circuit/module.py
...image/Image_gan/style_transfer/lapstyle_circuit/module.py
+150
-0
modules/image/Image_gan/style_transfer/lapstyle_circuit/requirements.txt
...mage_gan/style_transfer/lapstyle_circuit/requirements.txt
+1
-0
modules/image/Image_gan/style_transfer/lapstyle_circuit/util.py
...s/image/Image_gan/style_transfer/lapstyle_circuit/util.py
+11
-0
未找到文件。
modules/image/Image_gan/style_transfer/lapstyle_circuit/README.md
0 → 100644
浏览文件 @
a2f8f1ac
# lapstyle_circuit
|模型名称|lapstyle_circuit|
| :--- | :---: |
|类别|图像 - 风格迁移|
|网络|LapStyle|
|数据集|COCO|
|是否支持Fine-tuning|否|
|模型大小|121MB|
|最新更新日期|2021-12-07|
|数据指标|-|
## 一、模型基本信息
-
### 应用效果展示
-
样例结果示例:
<p
align=
"center"
>
<img
src=
"https://user-images.githubusercontent.com/22424850/144995283-77ddba45-9efe-4f72-914c-1bff734372ed.png"
width =
"50%"
hspace=
'10'
/>
<br
/>
输入内容图形
<br
/>
<img
src=
"https://user-images.githubusercontent.com/22424850/144997574-8b4028ad-d871-4caf-87d1-191582bba805.jpg"
width =
"50%"
hspace=
'10'
/>
<br
/>
输入风格图形
<br
/>
<img
src=
"https://user-images.githubusercontent.com/22424850/144997589-407a12b9-95bf-44e7-b558-b1026ef3cd5a.png"
width =
"50%"
hspace=
'10'
/>
<br
/>
输出图像
<br
/>
</p>
-
### 模型介绍
-
LapStyle--拉普拉斯金字塔风格化网络,是一种能够生成高质量风格化图的快速前馈风格化网络,能渐进地生成复杂的纹理迁移效果,同时能够在512分辨率下达到100fps的速度。可实现多种不同艺术风格的快速迁移,在艺术图像生成、滤镜等领域有广泛的应用。
-
更多详情参考:
[
Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality Artistic Style Transfer
](
https://arxiv.org/pdf/2104.05376.pdf
)
## 二、安装
-
### 1、环境依赖
-
ppgan
-
### 2、安装
-
```shell
$ hub install lapstyle_circuit
```
-
如您安装时遇到问题,可参考:
[
零基础windows安装
](
../../../../../docs/docs_ch/get_start/windows_quickstart.md
)
|
[
零基础Linux安装
](
../../../../../docs/docs_ch/get_start/linux_quickstart.md
)
|
[
零基础MacOS安装
](
../../../../../docs/docs_ch/get_start/mac_quickstart.md
)
## 三、模型API预测
-
### 1、命令行预测
-
```shell
# Read from a file
$ hub run lapstyle_circuit --content "/PATH/TO/IMAGE" --style "/PATH/TO/IMAGE1"
```
-
通过命令行方式实现风格转换模型的调用,更多请见
[
PaddleHub命令行指令
](
../../../../docs/docs_ch/tutorial/cmd_usage.rst
)
-
### 2、预测代码示例
-
```python
import paddlehub as hub
module = hub.Module(name="lapstyle_circuit")
content = cv2.imread("/PATH/TO/IMAGE")
style = cv2.imread("/PATH/TO/IMAGE1")
results = module.style_transfer(images=[{'content':content, 'style':style}], output_dir='./transfer_result', use_gpu=True)
```
-
### 3、API
-
```python
style_transfer(images=None, paths=None, output_dir='./transfer_result/', use_gpu=False, visualization=True)
```
-
风格转换API。
- **参数**
- images (list[dict]): data of images, 每一个元素都为一个 dict,有关键字 content, style, 相应取值为:
- content (numpy.ndarray): 待转换的图片,shape 为 \[H, W, C\],BGR格式;<br/>
- style (numpy.ndarray) : 风格图像,shape为 \[H, W, C\],BGR格式;<br/>
- paths (list[str]): paths to images, 每一个元素都为一个dict, 有关键字 content, style, 相应取值为:
- content (str): 待转换的图片的路径;<br/>
- style (str) : 风格图像的路径;<br/>
- output\_dir (str): 结果保存的路径; <br/>
- use\_gpu (bool): 是否使用 GPU;<br/>
- visualization(bool): 是否保存结果到本地文件夹
## 四、服务部署
-
PaddleHub Serving可以部署一个在线图像风格转换服务。
-
### 第一步:启动PaddleHub Serving
-
运行启动命令:
-
```shell
$ hub serving start -m lapstyle_circuit
```
-
这样就完成了一个图像风格转换的在线服务API的部署,默认端口号为8866。
-
**NOTE:**
如使用GPU预测,则需要在启动服务之前,请设置CUDA
\_
VISIBLE
\_
DEVICES环境变量,否则不用设置。
-
### 第二步:发送预测请求
-
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
-
```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[{'content': cv2_to_base64(cv2.imread("/PATH/TO/IMAGE")), 'style': cv2_to_base64(cv2.imread("/PATH/TO/IMAGE1"))}]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/lapstyle_circuit"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
## 五、更新历史
* 1.0.0
初始发布
- ```
shell
$ hub install lapstyle_circuit==1.0.0
```
modules/image/Image_gan/style_transfer/lapstyle_circuit/model.py
0 → 100644
浏览文件 @
a2f8f1ac
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
urllib.request
import
cv2
as
cv
import
numpy
as
np
import
paddle
import
paddle.nn.functional
as
F
from
paddle.vision.transforms
import
functional
from
PIL
import
Image
from
ppgan.models.generators
import
DecoderNet
from
ppgan.models.generators
import
Encoder
from
ppgan.models.generators
import
RevisionNet
from
ppgan.utils.visual
import
tensor2img
def
img
(
img
):
# some images have 4 channels
if
img
.
shape
[
2
]
>
3
:
img
=
img
[:,
:,
:
3
]
# HWC to CHW
return
img
def
img_totensor
(
content_img
,
style_img
):
if
content_img
.
ndim
==
2
:
content_img
=
cv
.
cvtColor
(
content_img
,
cv
.
COLOR_GRAY2RGB
)
else
:
content_img
=
cv
.
cvtColor
(
content_img
,
cv
.
COLOR_BGR2RGB
)
h
,
w
,
c
=
content_img
.
shape
content_img
=
Image
.
fromarray
(
content_img
)
content_img
=
content_img
.
resize
((
512
,
512
),
Image
.
BILINEAR
)
content_img
=
np
.
array
(
content_img
)
content_img
=
img
(
content_img
)
content_img
=
functional
.
to_tensor
(
content_img
)
style_img
=
cv
.
cvtColor
(
style_img
,
cv
.
COLOR_BGR2RGB
)
style_img
=
Image
.
fromarray
(
style_img
)
style_img
=
style_img
.
resize
((
512
,
512
),
Image
.
BILINEAR
)
style_img
=
np
.
array
(
style_img
)
style_img
=
img
(
style_img
)
style_img
=
functional
.
to_tensor
(
style_img
)
content_img
=
paddle
.
unsqueeze
(
content_img
,
axis
=
0
)
style_img
=
paddle
.
unsqueeze
(
style_img
,
axis
=
0
)
return
content_img
,
style_img
,
h
,
w
def
tensor_resample
(
tensor
,
dst_size
,
mode
=
'bilinear'
):
return
F
.
interpolate
(
tensor
,
dst_size
,
mode
=
mode
,
align_corners
=
False
)
def
laplacian
(
x
):
"""
Laplacian
return:
x - upsample(downsample(x))
"""
return
x
-
tensor_resample
(
tensor_resample
(
x
,
[
x
.
shape
[
2
]
//
2
,
x
.
shape
[
3
]
//
2
]),
[
x
.
shape
[
2
],
x
.
shape
[
3
]])
def
make_laplace_pyramid
(
x
,
levels
):
"""
Make Laplacian Pyramid
"""
pyramid
=
[]
current
=
x
for
i
in
range
(
levels
):
pyramid
.
append
(
laplacian
(
current
))
current
=
tensor_resample
(
current
,
(
max
(
current
.
shape
[
2
]
//
2
,
1
),
max
(
current
.
shape
[
3
]
//
2
,
1
)))
pyramid
.
append
(
current
)
return
pyramid
def
fold_laplace_pyramid
(
pyramid
):
"""
Fold Laplacian Pyramid
"""
current
=
pyramid
[
-
1
]
for
i
in
range
(
len
(
pyramid
)
-
2
,
-
1
,
-
1
):
# iterate from len-2 to 0
up_h
,
up_w
=
pyramid
[
i
].
shape
[
2
],
pyramid
[
i
].
shape
[
3
]
current
=
pyramid
[
i
]
+
tensor_resample
(
current
,
(
up_h
,
up_w
))
return
current
class
LapStylePredictor
:
def
__init__
(
self
,
weight_path
=
None
):
self
.
net_enc
=
Encoder
()
self
.
net_dec
=
DecoderNet
()
self
.
net_rev
=
RevisionNet
()
self
.
net_rev_2
=
RevisionNet
()
self
.
net_enc
.
set_dict
(
paddle
.
load
(
weight_path
)[
'net_enc'
])
self
.
net_enc
.
eval
()
self
.
net_dec
.
set_dict
(
paddle
.
load
(
weight_path
)[
'net_dec'
])
self
.
net_dec
.
eval
()
self
.
net_rev
.
set_dict
(
paddle
.
load
(
weight_path
)[
'net_rev'
])
self
.
net_rev
.
eval
()
self
.
net_rev_2
.
set_dict
(
paddle
.
load
(
weight_path
)[
'net_rev_2'
])
self
.
net_rev_2
.
eval
()
def
run
(
self
,
content_img
,
style_image
):
content_img
,
style_img
,
h
,
w
=
img_totensor
(
content_img
,
style_image
)
pyr_ci
=
make_laplace_pyramid
(
content_img
,
2
)
pyr_si
=
make_laplace_pyramid
(
style_img
,
2
)
pyr_ci
.
append
(
content_img
)
pyr_si
.
append
(
style_img
)
cF
=
self
.
net_enc
(
pyr_ci
[
2
])
sF
=
self
.
net_enc
(
pyr_si
[
2
])
stylized_small
=
self
.
net_dec
(
cF
,
sF
)
stylized_up
=
F
.
interpolate
(
stylized_small
,
scale_factor
=
2
)
revnet_input
=
paddle
.
concat
(
x
=
[
pyr_ci
[
1
],
stylized_up
],
axis
=
1
)
stylized_rev_lap
=
self
.
net_rev
(
revnet_input
)
stylized_rev
=
fold_laplace_pyramid
([
stylized_rev_lap
,
stylized_small
])
stylized_up
=
F
.
interpolate
(
stylized_rev
,
scale_factor
=
2
)
revnet_input
=
paddle
.
concat
(
x
=
[
pyr_ci
[
0
],
stylized_up
],
axis
=
1
)
stylized_rev_lap_second
=
self
.
net_rev_2
(
revnet_input
)
stylized_rev_second
=
fold_laplace_pyramid
([
stylized_rev_lap_second
,
stylized_rev_lap
,
stylized_small
])
stylized
=
stylized_rev_second
stylized_visual
=
tensor2img
(
stylized
,
min_max
=
(
0.
,
1.
))
return
stylized_visual
modules/image/Image_gan/style_transfer/lapstyle_circuit/module.py
0 → 100644
浏览文件 @
a2f8f1ac
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
copy
import
os
import
cv2
import
numpy
as
np
import
paddle
from
skimage.io
import
imread
from
skimage.transform
import
rescale
from
skimage.transform
import
resize
import
paddlehub
as
hub
from
.model
import
LapStylePredictor
from
.util
import
base64_to_cv2
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.module
import
runnable
from
paddlehub.module.module
import
serving
@
moduleinfo
(
name
=
"lapstyle_circuit"
,
type
=
"CV/style_transfer"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
""
,
version
=
"1.0.0"
)
class
Lapstyle_circuit
:
def
__init__
(
self
):
self
.
pretrained_model
=
os
.
path
.
join
(
self
.
directory
,
"lapstyle_circuit.pdparams"
)
self
.
network
=
LapStylePredictor
(
weight_path
=
self
.
pretrained_model
)
def
style_transfer
(
self
,
images
:
list
=
None
,
paths
:
list
=
None
,
output_dir
:
str
=
'./transfer_result/'
,
use_gpu
:
bool
=
False
,
visualization
:
bool
=
True
):
'''
Transfer a image to circuit style.
images (list[dict]): data of images, each element is a dict:
- content (numpy.ndarray): input image,shape is \[H, W, C\],BGR format;<br/>
- style (numpy.ndarray) : style image,shape is \[H, W, C\],BGR format;<br/>
paths (list[dict]): paths to images, eacg element is a dict:
- content (str): path to input image;<br/>
- style (str) : path to style image;<br/>
output_dir (str): the dir to save the results
use_gpu (bool): if True, use gpu to perform the computation, otherwise cpu.
visualization (bool): if True, save results in output_dir.
'''
results
=
[]
paddle
.
disable_static
()
place
=
'gpu:0'
if
use_gpu
else
'cpu'
place
=
paddle
.
set_device
(
place
)
if
images
==
None
and
paths
==
None
:
print
(
'No image provided. Please input an image or a image path.'
)
return
if
images
!=
None
:
for
image_dict
in
images
:
content_img
=
image_dict
[
'content'
]
style_img
=
image_dict
[
'style'
]
results
.
append
(
self
.
network
.
run
(
content_img
,
style_img
))
if
paths
!=
None
:
for
path_dict
in
paths
:
content_img
=
cv2
.
imread
(
path_dict
[
'content'
])
style_img
=
cv2
.
imread
(
path_dict
[
'style'
])
results
.
append
(
self
.
network
.
run
(
content_img
,
style_img
))
if
visualization
==
True
:
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
for
i
,
out
in
enumerate
(
results
):
cv2
.
imwrite
(
os
.
path
.
join
(
output_dir
,
'output_{}.png'
.
format
(
i
)),
out
[:,
:,
::
-
1
])
return
results
@
runnable
def
run_cmd
(
self
,
argvs
:
list
):
"""
Run as a command.
"""
self
.
parser
=
argparse
.
ArgumentParser
(
description
=
"Run the {} module."
.
format
(
self
.
name
),
prog
=
'hub run {}'
.
format
(
self
.
name
),
usage
=
'%(prog)s'
,
add_help
=
True
)
self
.
arg_input_group
=
self
.
parser
.
add_argument_group
(
title
=
"Input options"
,
description
=
"Input data. Required"
)
self
.
arg_config_group
=
self
.
parser
.
add_argument_group
(
title
=
"Config options"
,
description
=
"Run configuration for controlling module behavior, not required."
)
self
.
add_module_config_arg
()
self
.
add_module_input_arg
()
self
.
args
=
self
.
parser
.
parse_args
(
argvs
)
self
.
style_transfer
(
paths
=
[{
'content'
:
self
.
args
.
content
,
'style'
:
self
.
args
.
style
}],
output_dir
=
self
.
args
.
output_dir
,
use_gpu
=
self
.
args
.
use_gpu
,
visualization
=
self
.
args
.
visualization
)
@
serving
def
serving_method
(
self
,
images
,
**
kwargs
):
"""
Run as a service.
"""
images_decode
=
copy
.
deepcopy
(
images
)
for
image
in
images_decode
:
image
[
'content'
]
=
base64_to_cv2
(
image
[
'content'
])
image
[
'style'
]
=
base64_to_cv2
(
image
[
'style'
])
results
=
self
.
style_transfer
(
images_decode
,
**
kwargs
)
tolist
=
[
result
.
tolist
()
for
result
in
results
]
return
tolist
def
add_module_config_arg
(
self
):
"""
Add the command config options.
"""
self
.
arg_config_group
.
add_argument
(
'--use_gpu'
,
action
=
'store_true'
,
help
=
"use GPU or not"
)
self
.
arg_config_group
.
add_argument
(
'--output_dir'
,
type
=
str
,
default
=
'transfer_result'
,
help
=
'output directory for saving result.'
)
self
.
arg_config_group
.
add_argument
(
'--visualization'
,
type
=
bool
,
default
=
False
,
help
=
'save results or not.'
)
def
add_module_input_arg
(
self
):
"""
Add the command input options.
"""
self
.
arg_input_group
.
add_argument
(
'--content'
,
type
=
str
,
help
=
"path to content image."
)
self
.
arg_input_group
.
add_argument
(
'--style'
,
type
=
str
,
help
=
"path to style image."
)
modules/image/Image_gan/style_transfer/lapstyle_circuit/requirements.txt
0 → 100644
浏览文件 @
a2f8f1ac
ppgan
modules/image/Image_gan/style_transfer/lapstyle_circuit/util.py
0 → 100644
浏览文件 @
a2f8f1ac
import
base64
import
cv2
import
numpy
as
np
def
base64_to_cv2
(
b64str
):
data
=
base64
.
b64decode
(
b64str
.
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
data
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
return
data
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录