未验证 提交 da23fe51 编写于 作者: K KP 提交者: GitHub

Merge pull request #1686 from rainyfly/add_seeinthedark_module

add see in the dark module
# seeinthedark
|模型名称|seeinthedark|
| :--- | :---: |
|类别|图像 - 暗光增强|
|网络|ConvNet|
|数据集|SID dataset|
|是否支持Fine-tuning|否|
|模型大小|120MB|
|最新更新日期|2021-11-02|
|数据指标|-|
## 一、模型基本信息
- ### 应用效果展示
- 样例结果示例:
<p align="center">
<img src="https://user-images.githubusercontent.com/22424850/142962370-a957d7b3-8050-4f5a-8462-3d6e49facb33.png" width = "450" height = "300" hspace='10'/>
<br />
输入图像
<br />
<img src="https://user-images.githubusercontent.com/22424850/142962460-4a1b31ef-0eec-423b-ab3d-8622f3e8261a.png" width = "450" height = "300" hspace='10'/>
<br />
输出图像
<br />
</p>
- ### 模型介绍
- 通过大量暗光条件下短曝光和长曝光组成的图像对,以RAW图像为输入,RGB图像为参照进行训练,该模型实现端到端直接将暗光下的RAW图像处理得到可见的RGB图像。
- 更多详情参考:[Learning to See in the Dark](http://cchen156.github.io/paper/18CVPR_SID.pdf)
## 二、安装
- ### 1、环境依赖
- rawpy
- ### 2、安装
- ```shell
$ hub install seeinthedark
```
- 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
| [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
## 三、模型API预测
- ### 1、命令行预测
- ```shell
# Read from a raw(Sony, .ARW) file
$ hub run seeinthedark --input_path "/PATH/TO/IMAGE"
```
- 通过命令行方式实现暗光增强模型的调用,更多请见 [PaddleHub命令行指令](../../../../docs/docs_ch/tutorial/cmd_usage.rst)
- ### 2、预测代码示例
- ```python
import paddlehub as hub
denoiser = hub.Module(name="seeinthedark")
input_path = "/PATH/TO/IMAGE"
# Read from a raw file
denoiser.denoising(paths=[input_path], output_path='./denoising_result.png', use_gpu=True)
```
- ### 3、API
- ```python
def denoising(images=None, paths=None, output_dir='./denoising_result/', use_gpu=False, visualization=True)
```
- 暗光增强API,完成对暗光RAW图像的降噪并处理生成RGB图像。
- **参数**
- images (list\[numpy.ndarray\]): 输入的图像,单通道的马赛克图像; <br/>
- paths (list\[str\]): 暗光图像文件的路径,Sony的RAW格式;<br/>
- output\_dir (str): 结果保存的路径; <br/>
- use\_gpu (bool): 是否使用 GPU;<br/>
- visualization(bool): 是否保存结果到本地文件夹
## 四、服务部署
- PaddleHub Serving可以部署一个在线图像风格转换服务。
- ### 第一步:启动PaddleHub Serving
- 运行启动命令:
- ```shell
$ hub serving start -m seeinthedark
```
- 这样就完成了一个图像风格转换的在线服务API的部署,默认端口号为8866。
- **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
- ### 第二步:发送预测请求
- 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
- ```python
import requests
import json
import rawpy
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(rawpy.imread("/PATH/TO/IMAGE").raw_image_visible)]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/seeinthedark/"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
```
## 五、更新历史
* 1.0.0
初始发布
- ```shell
$ hub install seeinthedark==1.0.0
```
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import paddle
import paddlehub as hub
from paddlehub.module.module import moduleinfo, runnable, serving
import numpy as np
import rawpy
import cv2
from .util import base64_to_cv2
def pack_raw(raw):
# pack Bayer image to 4 channels
im = raw
if not isinstance(raw, np.ndarray):
im = raw.raw_image_visible.astype(np.float32)
im = np.maximum(im - 512, 0) / (16383 - 512) # subtract the black level
im = np.expand_dims(im, axis=2)
img_shape = im.shape
H = img_shape[0]
W = img_shape[1]
out = np.concatenate((im[0:H:2, 0:W:2, :], im[0:H:2, 1:W:2, :], im[1:H:2, 1:W:2, :], im[1:H:2, 0:W:2, :]), axis=2)
return out
@moduleinfo(
name="seeinthedark", type="CV/denoising", author="paddlepaddle", author_email="", summary="", version="1.0.0")
class LearningToSeeInDark:
def __init__(self):
self.pretrained_model = os.path.join(self.directory, "pd_model/inference_model")
self.cpu_have_loaded = False
self.gpu_have_loaded = False
def set_device(self, use_gpu=False):
if use_gpu == False:
if not self.cpu_have_loaded:
exe = paddle.static.Executor(paddle.CPUPlace())
[prog, inputs, outputs] = paddle.static.load_inference_model(
path_prefix=self.pretrained_model,
executor=exe,
model_filename="model.pdmodel",
params_filename="model.pdiparams")
self.cpuexec, self.cpuprog, self.cpuinputs, self.cpuoutputs = exe, prog, inputs, outputs
self.cpu_have_loaded = True
return self.cpuexec, self.cpuprog, self.cpuinputs, self.cpuoutputs
else:
if not self.gpu_have_loaded:
exe = paddle.static.Executor(paddle.CUDAPlace(0))
[prog, inputs, outputs] = paddle.static.load_inference_model(
path_prefix=self.pretrained_model,
executor=exe,
model_filename="model.pdmodel",
params_filename="model.pdiparams")
self.gpuexec, self.gpuprog, self.gpuinputs, self.gpuoutputs = exe, prog, inputs, outputs
self.gpu_have_loaded = True
return self.gpuexec, self.gpuprog, self.gpuinputs, self.gpuoutputs
def denoising(self,
images: list = None,
paths: list = None,
output_dir: str = './enlightening_result/',
use_gpu: bool = False,
visualization: bool = True):
'''
Denoise a raw image in the low-light scene.
images (list[numpy.ndarray]): data of images, shape of each is [H, W], must be sing-channel image captured by camera.
paths (list[str]): paths to images
output_dir: the dir to save the results
use_gpu: if True, use gpu to perform the computation, otherwise cpu.
visualization: if True, save results in output_dir.
'''
results = []
paddle.enable_static()
exe, prog, inputs, outputs = self.set_device(use_gpu)
if images != None:
for raw in images:
input_full = np.expand_dims(pack_raw(raw), axis=0) * 300
px = input_full.shape[1] // 512
py = input_full.shape[2] // 512
rx, ry = px * 512, py * 512
input_full = input_full[:, :rx, :ry, :]
output = np.random.randn(rx * 2, ry * 2, 3)
input_full = np.minimum(input_full, 1.0)
for i in range(px):
for j in range(py):
input_patch = input_full[:, i * 512:i * 512 + 512, j * 512:j * 512 + 512, :]
result = exe.run(prog, feed={inputs[0]: input_patch}, fetch_list=outputs)
output[i * 512 * 2:i * 512 * 2 + 512 * 2, j * 512 * 2:j * 512 * 2 + 512 * 2, :] = result[0][0]
output = np.minimum(np.maximum(output, 0), 1)
output = output * 255
output = np.clip(output, 0, 255)
output = output.astype('uint8')
results.append(output)
if paths != None:
for path in paths:
raw = rawpy.imread(path)
input_full = np.expand_dims(pack_raw(raw), axis=0) * 300
px = input_full.shape[1] // 512
py = input_full.shape[2] // 512
rx, ry = px * 512, py * 512
input_full = input_full[:, :rx, :ry, :]
output = np.random.randn(rx * 2, ry * 2, 3)
input_full = np.minimum(input_full, 1.0)
for i in range(px):
for j in range(py):
input_patch = input_full[:, i * 512:i * 512 + 512, j * 512:j * 512 + 512, :]
result = exe.run(prog, feed={inputs[0]: input_patch}, fetch_list=outputs)
output[i * 512 * 2:i * 512 * 2 + 512 * 2, j * 512 * 2:j * 512 * 2 + 512 * 2, :] = result[0][0]
output = np.minimum(np.maximum(output, 0), 1)
output = output * 255
output = np.clip(output, 0, 255)
output = output.astype('uint8')
results.append(output)
if visualization == True:
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
for i, out in enumerate(results):
cv2.imwrite(os.path.join(output_dir, 'output_{}.png'.format(i)), out[:, :, ::-1])
return results
@runnable
def run_cmd(self, argvs: list):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(
description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
self.args = self.parser.parse_args(argvs)
self.denoising(
paths=[self.args.input_path],
output_dir=self.args.output_dir,
use_gpu=self.args.use_gpu,
visualization=self.args.visualization)
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.denoising(images=images_decode, **kwargs)
tolist = [result.tolist() for result in results]
return tolist
def add_module_config_arg(self):
"""
Add the command config options.
"""
self.arg_config_group.add_argument('--use_gpu', action='store_true', help="use GPU or not")
self.arg_config_group.add_argument(
'--output_dir', type=str, default='denoising_result', help='output directory for saving result.')
self.arg_config_group.add_argument('--visualization', type=bool, default=False, help='save results or not.')
def add_module_input_arg(self):
"""
Add the command input options.
"""
self.arg_input_group.add_argument(
'--input_path', type=str, help="path to input raw image, should be raw file captured by camera.")
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册