trainer.py 15.2 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# coding:utf-8
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
import time
from collections import defaultdict
W
wuzewu 已提交
20
from typing import Any, Callable, Generic, List
W
wuzewu 已提交
21

22
import paddle
W
wuzewu 已提交
23 24
from visualdl import LogWriter

W
wuzewu 已提交
25
from paddlehub.utils.log import logger
W
wuzewu 已提交
26 27 28 29 30
from paddlehub.utils.utils import Timer


class Trainer(object):
    '''
W
wuzewu 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    Model trainer

    Args:
        model(paddle.nn.Layer) : Model to train or evaluate.
        strategy(paddle.optimizer.Optimizer) : Optimizer strategy.
        use_vdl(bool) : Whether to use visualdl to record training data.
        checkpoint_dir(str) : Directory where the checkpoint is saved, and the trainer will restore the
            state and model parameters from the checkpoint.
        compare_metrics(callable) : The method of comparing the model metrics. If not specified, the main
            metric return by `validation_step` will be used for comparison by default, the larger the
            value, the better the effect. This method will affect the saving of the best model. If the
            default behavior does not meet your requirements, please pass in a custom method.

            Example:
                .. code-block:: python

                    def compare_metrics(old_metric: dict, new_metric: dict):
                        mainkey = list(new_metric.keys())[0]
                        return old_metric[mainkey] < new_metric[mainkey]
W
wuzewu 已提交
50 51 52
    '''

    def __init__(self,
53 54
                 model: paddle.nn.Layer,
                 strategy: paddle.optimizer.Optimizer,
W
wuzewu 已提交
55 56 57
                 use_vdl: bool = True,
                 checkpoint_dir: str = None,
                 compare_metrics: Callable = None):
W
wuzewu 已提交
58 59
        self.nranks = paddle.distributed.get_world_size()
        self.local_rank = paddle.distributed.get_rank()
W
wuzewu 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        self.model = model
        self.optimizer = strategy
        self.checkpoint_dir = checkpoint_dir if checkpoint_dir else 'ckpt_{}'.format(time.time())

        if self.local_rank == 0 and not os.path.exists(self.checkpoint_dir):
            os.makedirs(self.checkpoint_dir)

        self.use_vdl = use_vdl
        if self.local_rank == 0 and self.use_vdl:
            vdl_dir = os.path.join(self.checkpoint_dir, 'visualization')
            self.log_writer = LogWriter(vdl_dir)

        self.current_epoch = 0
        self.best_metrics = defaultdict(int)

        if self.nranks > 1:
W
wuzewu 已提交
76 77 78
            paddle.distributed.init_parallel_env()
            strategy = paddle.distributed.prepare_context()
            self.model = paddle.DataParallel(self.model, strategy)
W
wuzewu 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        self.compare_metrics = self._compare_metrics if not compare_metrics else compare_metrics
        self._load_checkpoint()

    def _load_checkpoint(self):
        '''Load checkpoint and state dict'''
        max_epoch = -1

        for file in os.listdir(self.checkpoint_dir):
            if not file.startswith('epoch_'):
                continue

            _epoch = file.split('_')[-1]
            if not _epoch.isdigit():
                continue

            max_epoch = max(max_epoch, int(_epoch))

        if max_epoch == -1:
            if self.local_rank == 0:
                logger.warning('PaddleHub model checkpoint not found, start from scratch...')
            return

        # load best metrics
        self._load_metrics()

        self.current_epoch = max_epoch
        metric_msg = ['{}={:.4f}'.format(metric, value) for metric, value in self.best_metrics.items()]
        metric_msg = ' '.join(metric_msg)
        if self.local_rank == 0:
            logger.info('PaddleHub model checkpoint loaded. current_epoch={} [{}]'.format(
                self.current_epoch, metric_msg))

W
wuzewu 已提交
111
        # load model checkpoint
112
        model_params_path = os.path.join(self.checkpoint_dir, 'epoch_{}'.format(self.current_epoch), 'model.pdparams')
W
wuzewu 已提交
113
        state_dict = paddle.load(model_params_path)
114
        self.model.set_state_dict(state_dict)
W
wuzewu 已提交
115

W
wuzewu 已提交
116
        # load optimizer checkpoint
W
wuzewu 已提交
117
        optim_params_path = os.path.join(self.checkpoint_dir, 'epoch_{}'.format(self.current_epoch), 'model.pdopt')
W
wuzewu 已提交
118
        state_dict = paddle.load(optim_params_path)
119
        self.optimizer.set_state_dict(state_dict)
W
wuzewu 已提交
120

W
wuzewu 已提交
121 122
    def _save_checkpoint(self):
        '''Save model checkpoint and state dict'''
W
wuzewu 已提交
123
        model_path = os.path.join(self.checkpoint_dir, 'epoch_{}'.format(self.current_epoch))
W
wuzewu 已提交
124 125 126 127 128
        logger.info('Saving model checkpoint to {}'.format(model_path))
        self.save_model(model_path)

    def save_model(self, save_dir: str):
        '''Save model'''
W
wuzewu 已提交
129 130 131
        model_params_path = os.path.join(save_dir, 'model.pdparams')
        optim_params_path = os.path.join(save_dir, 'model.pdopt')
        paddle.save(self.model.state_dict(), model_params_path)
132
        paddle.save(self.optimizer.state_dict(), optim_params_path)
W
wuzewu 已提交
133 134 135 136 137 138 139 140 141 142

    def _save_metrics(self):
        with open(os.path.join(self.checkpoint_dir, 'metrics.pkl'), 'wb') as file:
            pickle.dump(self.best_metrics, file)

    def _load_metrics(self):
        with open(os.path.join(self.checkpoint_dir, 'metrics.pkl'), 'rb') as file:
            self.best_metrics = pickle.load(file)

    def train(self,
143
              train_dataset: paddle.io.Dataset,
W
wuzewu 已提交
144 145 146
              epochs: int = 1,
              batch_size: int = 1,
              num_workers: int = 0,
147
              eval_dataset: paddle.io.Dataset = None,
W
wuzewu 已提交
148 149 150 151 152 153
              log_interval: int = 10,
              save_interval: int = 10):
        '''
        Train a model with specific config.

        Args:
154
            train_dataset(paddle.io.Dataset) : Dataset to train the model
W
wuzewu 已提交
155 156 157
            epochs(int) : Number of training loops, default is 1.
            batch_size(int) : Batch size of per step, default is 1.
            num_workers(int) : Number of subprocess to load data, default is 0.
W
wuzewu 已提交
158 159
            eval_dataset(paddle.io.Dataset) : The validation dataset, deafult is None. If set, the Trainer will
                execute evaluate function every `save_interval` epochs.
W
wuzewu 已提交
160 161 162
            log_interval(int) : Log the train infomation every `log_interval` steps.
            save_interval(int) : Save the checkpoint every `save_interval` epochs.
        '''
163 164 165
        batch_sampler = paddle.io.DistributedBatchSampler(
            train_dataset, batch_size=batch_size, shuffle=True, drop_last=False)
        loader = paddle.io.DataLoader(
W
wuzewu 已提交
166 167 168 169 170
            train_dataset,
            batch_sampler=batch_sampler,
            num_workers=num_workers,
            return_list=True,
            use_buffer_reader=True)
W
wuzewu 已提交
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        steps_per_epoch = len(batch_sampler)
        timer = Timer(steps_per_epoch * epochs)
        timer.start()

        for i in range(epochs):
            self.current_epoch += 1
            avg_loss = 0
            avg_metrics = defaultdict(int)
            self.model.train()

            for batch_idx, batch in enumerate(loader):
                loss, metrics = self.training_step(batch, batch_idx)
                self.optimizer_step(self.current_epoch, batch_idx, self.optimizer, loss)
                self.optimizer_zero_grad(self.current_epoch, batch_idx, self.optimizer)

                # calculate metrics and loss
                avg_loss += loss.numpy()[0]
                for metric, value in metrics.items():
                    avg_metrics[metric] += value.numpy()[0]

                timer.count()

                if (batch_idx + 1) % log_interval == 0 and self.local_rank == 0:
W
wuzewu 已提交
195
                    lr = self.optimizer.get_lr()
196 197 198 199 200 201 202
                    avg_loss /= log_interval
                    if self.use_vdl:
                        self.log_writer.add_scalar(tag='TRAIN/loss', step=timer.current_step, value=avg_loss)

                    print_msg = 'Epoch={}/{}, Step={}/{}'.format(self.current_epoch, epochs, batch_idx + 1,
                                                                 steps_per_epoch)
                    print_msg += ' loss={:.4f}'.format(avg_loss)
W
wuzewu 已提交
203

204 205 206 207 208 209 210 211
                    for metric, value in avg_metrics.items():
                        value /= log_interval
                        if self.use_vdl:
                            self.log_writer.add_scalar(
                                tag='TRAIN/{}'.format(metric), step=timer.current_step, value=value)
                        print_msg += ' {}={:.4f}'.format(metric, value)

                    print_msg += ' lr={:.6f} step/sec={:.2f} | ETA {}'.format(lr, timer.timing, timer.eta)
W
wuzewu 已提交
212

213
                    logger.train(print_msg)
W
wuzewu 已提交
214

215 216
                    avg_loss = 0
                    avg_metrics = defaultdict(int)
W
wuzewu 已提交
217

218 219 220 221 222 223 224 225
                if self.current_epoch % save_interval == 0 and batch_idx + 1 == steps_per_epoch and self.local_rank == 0:
                    if eval_dataset:
                        result = self.evaluate(eval_dataset, batch_size, num_workers)
                        eval_loss = result.get('loss', None)
                        eval_metrics = result.get('metrics', {})
                        if self.use_vdl:
                            if eval_loss:
                                self.log_writer.add_scalar(tag='EVAL/loss', step=timer.current_step, value=eval_loss)
W
wuzewu 已提交
226

227 228 229
                            for metric, value in eval_metrics.items():
                                self.log_writer.add_scalar(
                                    tag='EVAL/{}'.format(metric), step=timer.current_step, value=value)
W
wuzewu 已提交
230

231 232 233 234 235
                        if not self.best_metrics or self.compare_metrics(self.best_metrics, eval_metrics):
                            self.best_metrics = eval_metrics
                            best_model_path = os.path.join(self.checkpoint_dir, 'best_model')
                            self.save_model(best_model_path)
                            self._save_metrics()
W
wuzewu 已提交
236

237 238 239 240 241
                            metric_msg = [
                                '{}={:.4f}'.format(metric, value) for metric, value in self.best_metrics.items()
                            ]
                            metric_msg = ' '.join(metric_msg)
                            logger.eval('Saving best model to {} [best {}]'.format(best_model_path, metric_msg))
W
wuzewu 已提交
242

243
                    self._save_checkpoint()
W
wuzewu 已提交
244

245
    def evaluate(self, eval_dataset: paddle.io.Dataset, batch_size: int = 1, num_workers: int = 0):
W
wuzewu 已提交
246 247 248 249
        '''
        Run evaluation and returns metrics.

        Args:
250
            eval_dataset(paddle.io.Dataset) : The validation dataset
W
wuzewu 已提交
251 252 253
            batch_size(int) : Batch size of per step, default is 1.
            num_workers(int) : Number of subprocess to load data, default is 0.
        '''
254 255
        batch_sampler = paddle.io.DistributedBatchSampler(
            eval_dataset, batch_size=batch_size, shuffle=False, drop_last=False)
W
wuzewu 已提交
256

257
        loader = paddle.io.DataLoader(
W
wuzewu 已提交
258
            eval_dataset, batch_sampler=batch_sampler, num_workers=num_workers, return_list=True)
W
wuzewu 已提交
259

260 261 262 263
        self.model.eval()
        avg_loss = num_samples = 0
        sum_metrics = defaultdict(int)
        avg_metrics = defaultdict(int)
W
wuzewu 已提交
264

W
wuzewu 已提交
265
        with logger.processing('Evaluation on validation dataset'):
266 267 268 269 270 271
            for batch_idx, batch in enumerate(loader):
                result = self.validation_step(batch, batch_idx)
                loss = result.get('loss', None)
                metrics = result.get('metrics', {})
                bs = batch[0].shape[0]
                num_samples += bs
W
wuzewu 已提交
272

273 274
                if loss:
                    avg_loss += loss.numpy()[0] * bs
W
wuzewu 已提交
275

276 277
                for metric, value in metrics.items():
                    sum_metrics[metric] += value.numpy()[0] * bs
W
wuzewu 已提交
278

279 280 281 282 283
        # print avg metrics and loss
        print_msg = '[Evaluation result]'
        if loss:
            avg_loss /= num_samples
            print_msg += ' avg_loss={:.4f}'.format(avg_loss)
W
wuzewu 已提交
284

285 286 287 288 289 290 291 292 293
        for metric, value in sum_metrics.items():
            avg_metrics[metric] = value / num_samples
            print_msg += ' avg_{}={:.4f}'.format(metric, avg_metrics[metric])

        logger.eval(print_msg)

        if loss:
            return {'loss': avg_loss, 'metrics': avg_metrics}
        return {'metrics': avg_metrics}
W
wuzewu 已提交
294

W
wuzewu 已提交
295 296 297 298 299 300 301 302
    def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]) : The one batch data
            batch_idx(int) : The index of batch.
        '''
W
wuzewu 已提交
303 304 305 306 307 308 309
        if self.nranks > 1:
            result = self.model._layers.training_step(batch, batch_idx)
        else:
            result = self.model.training_step(batch, batch_idx)

        # process result
        if not isinstance(result, dict):
W
wuzewu 已提交
310
            raise RuntimeError('The return value of `trainning_step` in {} is not a dict'.format(self.model.__class__))
W
wuzewu 已提交
311 312 313

        loss = result.get('loss', None)
        if not loss:
W
wuzewu 已提交
314 315
            raise RuntimeError('Cannot find loss attribute in the return value of `trainning_step` of {}'.format(
                self.model.__class__))
W
wuzewu 已提交
316 317 318 319

        metrics = result.get('metrics', {})

        # back prop
W
wuzewu 已提交
320
        loss.backward()
W
wuzewu 已提交
321 322 323 324

        return loss, metrics

    def validation_step(self, batch: Any, batch_idx: int):
W
wuzewu 已提交
325 326 327 328 329 330 331
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]) : The one batch data
            batch_idx(int) : The index of batch.
        '''
W
wuzewu 已提交
332 333 334 335 336 337
        if self.nranks > 1:
            result = self.model._layers.validation_step(batch, batch_idx)
        else:
            result = self.model.validation_step(batch, batch_idx)
        return result

W
wuzewu 已提交
338
    def optimizer_step(self, epoch_idx: int, batch_idx: int, optimizer: paddle.optimizer.Optimizer,
339
                       loss: paddle.Tensor):
W
wuzewu 已提交
340 341 342 343 344 345 346 347 348
        '''
        One step for optimize.

        Args:
            epoch_idx(int) : The index of epoch.
            batch_idx(int) : The index of batch.
            optimizer(paddle.optimizer.Optimizer) : Optimizer used.
            loss(paddle.Tensor) : Loss tensor.
        '''
W
wuzewu 已提交
349
        self.optimizer.step()
350
        self.learning_rate_step(epoch_idx, batch_idx, self.optimizer._learning_rate, loss)
W
wuzewu 已提交
351 352

    def learning_rate_step(self, epoch_idx: int, batch_idx: int, learning_rate: Generic, loss: paddle.Tensor):
W
wuzewu 已提交
353
        if isinstance(learning_rate, paddle.optimizer.lr.LRScheduler):
W
wuzewu 已提交
354
            learning_rate.step()
W
wuzewu 已提交
355

W
wuzewu 已提交
356 357 358 359 360 361 362 363 364 365
    def optimizer_zero_grad(self, epoch_idx: int, batch_idx: int, optimizer: paddle.optimizer.Optimizer):
        '''
        One step for clear gradients.

        Args:
            epoch_idx(int) : The index of epoch.
            batch_idx(int) : The index of batch.
            optimizer(paddle.optimizer.Optimizer) : Optimizer used.
            loss(paddle.Tensor) : Loss tensor.
        '''
W
wuzewu 已提交
366 367 368 369 370 371
        self.model.clear_gradients()

    def _compare_metrics(self, old_metric: dict, new_metric: dict):
        '''Compare the whether the new metric value is better than the old one'''
        mainkey = list(new_metric.keys())[0]
        return old_metric[mainkey] < new_metric[mainkey]