module.py 10.0 KB
Newer Older
H
haoyuying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
import math
import os
import base64
from typing import Union

import argparse
import cv2
import numpy as np
import paddlehub as hub
import paddlex as pdx
import paddle.nn as nn
from paddlex.seg import transforms as T
from paddlehub.module.module import moduleinfo, runnable, serving


METER_SHAPE = 512
CIRCLE_CENTER = [256, 256]
CIRCLE_RADIUS = 250
PI = 3.1415926536
LINE_HEIGHT = 120
LINE_WIDTH = 1570
TYPE_THRESHOLD = 40
METER_CONFIG = [{
    'scale_value': 25.0 / 50.0,
    'range': 25.0,
    'unit': "(MPa)"
}, {
    'scale_value': 1.6 / 32.0,
    'range': 1.6,
    'unit': "(MPa)"
}]


def base64_to_cv2(b64str: str):
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def cv2_to_base64(image: np.ndarray):
    # return base64.b64encode(image)
    data = cv2.imencode('.jpg', image)[1]
    return base64.b64encode(data.tostring()).decode('utf8')


@moduleinfo(name="barometer_reader",
            type="CV/image_editing",
            author="paddlepaddle",
            author_email="",
            summary="meter_reader implements the detection and automatic reading of traditional mechanical pointer meters based on Meter detection and  pointer segmentation.",
            version="1.0.0")
class BarometerReader(nn.Layer):
    def __init__(self):
        super(BarometerReader, self).__init__()
        self.detector = pdx.load_model(os.path.join(self.directory, 'meter_det_inference_model'))
        self.segmenter = pdx.load_model(os.path.join(self.directory, 'meter_seg_inference_model'))
        self.seg_transform = T.Compose([T.Normalize()])
        
    def read_process(self, label_maps: np.ndarray):
        line_images = self.creat_line_image(label_maps)
        scale_data, pointer_data = self.convert_1d_data(line_images)
        self.scale_mean_filtration(scale_data)
        result = self.get_meter_reader(scale_data, pointer_data)
        return result
    
    def creat_line_image(self, meter_image: np.ndarray):
        line_image = np.zeros((LINE_HEIGHT, LINE_WIDTH), dtype=np.uint8)
        for row in range(LINE_HEIGHT):
            for col in range(LINE_WIDTH):
                theta = PI * 2 / LINE_WIDTH * (col + 1)
                rho = CIRCLE_RADIUS - row - 1
                x = int(CIRCLE_CENTER[0] + rho * math.cos(theta) + 0.5)
                y = int(CIRCLE_CENTER[1] - rho * math.sin(theta) + 0.5)
                line_image[row, col] = meter_image[x, y]
        return line_image

    def convert_1d_data(self, meter_image: np.ndarray):
        scale_data = np.zeros((LINE_WIDTH), dtype=np.uint8)
        pointer_data = np.zeros((LINE_WIDTH), dtype=np.uint8)
        for col in range(LINE_WIDTH):
            for row in range(LINE_HEIGHT):
                if meter_image[row, col] == 1:
                    pointer_data[col] += 1
                elif meter_image[row, col] == 2:
                    scale_data[col] += 1
        return scale_data, pointer_data

    def scale_mean_filtration(self, scale_data: np.ndarray):
        mean_data = np.mean(scale_data)
        for col in range(LINE_WIDTH):
            if scale_data[col] < mean_data:
                scale_data[col] = 0

    def get_meter_reader(self, scale_data: np.ndarray, pointer_data: np.ndarray):
        scale_flag = False
        pointer_flag = False
        one_scale_start = 0
        one_scale_end = 0
        one_pointer_start = 0
        one_pointer_end = 0
        scale_location = list()
        pointer_location = 0
        for i in range(LINE_WIDTH - 1):
            if scale_data[i] > 0 and scale_data[i + 1] > 0:
                if scale_flag == False:
                    one_scale_start = i
                    scale_flag = True
            if scale_flag:
                if scale_data[i] == 0 and scale_data[i + 1] == 0:
                    one_scale_end = i - 1
                    one_scale_location = (one_scale_start + one_scale_end) / 2
                    scale_location.append(one_scale_location)
                    one_scale_start = 0
                    one_scale_end = 0
                    scale_flag = False
            if pointer_data[i] > 0 and pointer_data[i + 1] > 0:
                if pointer_flag == False:
                    one_pointer_start = i
                    pointer_flag = True
            if pointer_flag:
                if pointer_data[i] == 0 and pointer_data[i + 1] == 0:
                    one_pointer_end = i - 1
                    pointer_location = (
                        one_pointer_start + one_pointer_end) / 2
                    one_pointer_start = 0
                    one_pointer_end = 0
                    pointer_flag = False

        scale_num = len(scale_location)
        scales = -1
        ratio = -1
        if scale_num > 0:
            for i in range(scale_num - 1):
                if scale_location[i] <= pointer_location and pointer_location < scale_location[i + 1]:
                    scales = i + (pointer_location - scale_location[i]) / (
                        scale_location[i + 1] - scale_location[i] + 1e-05) + 1
            ratio = (pointer_location - scale_location[0]) / (
                scale_location[scale_num - 1] - scale_location[0] + 1e-05)
        result = {'scale_num': scale_num, 'scales': scales, 'ratio': ratio}
        return result
    
    def predict(self, 
                im_file: Union[str, np.ndarray], 
                score_threshold: float = 0.5, 
                seg_batch_size: int = 2, 
                erode_kernel: int = 4, 
                use_erode: bool = True, 
                visualization: bool = False, 
                save_dir: str ='output'):
        
        if isinstance(im_file, str):
            im = cv2.imread(im_file).astype('float32')
        else:
            im = im_file.copy()
        det_results = self.detector.predict(im)
        filtered_results = list()
        for res in det_results:
            if res['score'] > score_threshold:
                filtered_results.append(res)

        resized_meters = list()

        for res in filtered_results:
            xmin, ymin, w, h = res['bbox']
            xmin = max(0, int(xmin))
            ymin = max(0, int(ymin))
            xmax = min(im.shape[1], int(xmin + w - 1))
            ymax = min(im.shape[0], int(ymin + h - 1))
            sub_image = im[ymin:(ymax + 1), xmin:(xmax + 1), :]
            
            # Resize the image with shape (METER_SHAPE, METER_SHAPE)
            meter_shape = sub_image.shape
            scale_x = float(METER_SHAPE) / float(meter_shape[1])
            scale_y = float(METER_SHAPE) / float(meter_shape[0])
            meter_meter = cv2.resize(
                sub_image,
                None,
                None,
                fx=scale_x,
                fy=scale_y,
                interpolation=cv2.INTER_LINEAR)
            meter_meter = meter_meter.astype('float32')
            resized_meters.append(meter_meter)
            
        meter_num = len(resized_meters)
        seg_results = list()
        for i in range(0, meter_num, seg_batch_size):
            im_size = min(meter_num, i + seg_batch_size)
            meter_images = list()
            for j in range(i, im_size):
                meter_images.append(resized_meters[j - i])
                
            result = self.segmenter.batch_predict(
                transforms=self.seg_transform,
                img_file_list=meter_images)

            if use_erode:
                kernel = np.ones((erode_kernel, erode_kernel), np.uint8)
                for i in range(len(result)):
                    result[i]['label_map'] = cv2.erode(result[i]['label_map'], kernel)
            seg_results.extend(result)
            
        results = list()
        for i, seg_result in enumerate(seg_results):
            result = self.read_process(seg_result['label_map'])
            results.append(result)
        
        meter_values = list()
        for i, result in enumerate(results):
            if result['scale_num'] > TYPE_THRESHOLD:
                value = result['scales'] * METER_CONFIG[0]['scale_value']
            else:
                value = result['scales'] * METER_CONFIG[1]['scale_value']
            meter_values.append(value)
            print("-- Meter {} -- result: {} --\n".format(i, value))
        # visualize the results
        visual_results = list()
        for i, res in enumerate(filtered_results):
            # Use `score` to represent the meter value
            res['score'] = meter_values[i]
            visual_results.append(res)
        if visualization:
            pdx.det.visualize(im_file, visual_results, -1, save_dir=save_dir)
            
        return visual_results
    
    @serving
    def serving_method(self, image: str, **kwargs):
        """
        Run as a service.
        """
        images_decode = base64_to_cv2(image)
        results = self.predict(im_file=images_decode, **kwargs)
        res = []
        for result in results:
            result['category_id'] = int(result['category_id'])
            result['bbox'] = [float(value) for value in result['bbox']]
            result['category'] = str(result['category'])
            res.append(result)
        return res
        
    @runnable
    def run_cmd(self, argvs: list):
        """
        Run as a command.
        """
        self.parser = argparse.ArgumentParser(
            description="Run the {} module.".format(self.name),
            prog='hub run {}'.format(self.name),
            usage='%(prog)s',
            add_help=True)
        self.arg_input_group = self.parser.add_argument_group(
            title="Input options", description="Input data. Required")
        self.arg_config_group = self.parser.add_argument_group(
            title="Config options",
            description=
            "Run configuration for controlling module behavior, not required.")
        self.add_module_input_arg()
        args = self.parser.parse_args(argvs)
        results = self.predict(im_file=args.input_path)
        return results


    def add_module_input_arg(self):
        """
        Add the command input options.
        """
        self.arg_input_group.add_argument(
            '--input_path', type=str, help="path to image.")