Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
ac26a0e0
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
1 年多 前同步成功
通知
283
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ac26a0e0
编写于
12月 28, 2020
作者:
H
haoyuying
提交者:
GitHub
12月 28, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add meter_reader
上级
15e8e205
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
385 addition
and
0 deletion
+385
-0
modules/image/industrial_application/meter_readings/barometer_reader/README.md
...ial_application/meter_readings/barometer_reader/README.md
+115
-0
modules/image/industrial_application/meter_readings/barometer_reader/module.py
...ial_application/meter_readings/barometer_reader/module.py
+270
-0
未找到文件。
modules/image/industrial_application/meter_readings/barometer_reader/README.md
0 → 100644
浏览文件 @
ac26a0e0
## 模型概述
barometer_reader是基于PaddleX实现对传统机械式指针表计的检测与自动读数功能的模型。该模型首先使用目标检测模型检测出图像中的表计,随后使用语义分割模型将各表计的指针和刻度分割,最后根据指针的相对位置和预知的量程计算出各表计的读数。
## 命令行预测
```
$ hub run barometer_reader --input_path "/PATH/TO/IMAGE"
```
## API
```
python
def
predict
(
self
,
im_file
:
Union
[
str
,
np
.
ndarray
],
score_threshold
:
float
=
0.5
,
seg_batch_size
:
int
=
2
,
erode_kernel
:
int
=
4
,
use_erode
:
bool
=
True
,
visualization
:
bool
=
False
,
save_dir
:
str
=
'output'
):
```
预测API,用于表针读数。
**参数**
*
im_file (Union
\[
str, np.ndarray
\]
): 图片路径或者图片数据,ndarray.shape 为
\[
H, W, C
\]
,BGR格式;
*
score
\_
threshold (float): 检测模型输出结果中,预测得分低于该阈值的框将被滤除,默认值为0.5;
*
seg
\_
batch
\_
size (int): 分割的批量大小,默认为2;
*
erode
\_
kernel (int): 图像腐蚀操作时的卷积核大小,默认值为4;
*
use
\_
erode (str): 是否使用图像腐蚀对分割预测图进行细分,默认为False;
*
visualization (bool): 是否将可视化图片保存;
*
save_dir (str): 保存图片到路径, 默认为"output"。
**返回**
*
res (list
\[
dict
\]
): 识别结果的列表,列表中每一个元素为 dict,关键字有 'category
\_
id', 'bbox', 'score','category', 对应的取值为:
*
category
\_
id (int): bounding box框出的图片的类别号;
*
bbox (list): bounding box数值;
*
score (float): bbox类别得分;
*
category (str): bounding box框出的图片的类别名称。
## 代码示例
```
python
import
cv2
import
paddlehub
as
hub
model
=
hub
.
Module
(
name
=
'barometer_reader'
)
res
=
model
.
predict
(
'/PATH/TO/IMAGE'
)
print
(
res
)
```
## 服务部署
PaddleHub Serving可以部署一个表计识别的在线服务。
## 第一步:启动PaddleHub Serving
运行启动命令:
```
shell
$
hub serving start
-m
barometer_reader
```
默认端口号为8866。
**NOTE:**
如使用GPU预测,则需要在启动服务之前,设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
## 第二步:发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```
python
import
requests
import
json
import
cv2
import
base64
def
cv2_to_base64
(
image
):
data
=
cv2
.
imencode
(
'.jpg'
,
image
)[
1
]
return
base64
.
b64encode
(
data
.
tostring
()).
decode
(
'utf8'
)
if
__name__
==
'__main__'
:
# 获取图片的base64编码格式
img
=
cv2_to_base64
(
cv2
.
imread
(
"/PATH/TO/IMAGE"
))
data
=
{
'image'
:
img
}
# 指定content-type
headers
=
{
"Content-type"
:
"application/json"
}
# 发送HTTP请求
url
=
"http://127.0.0.1:8866/predict/barometer_reader"
r
=
requests
.
post
(
url
=
url
,
headers
=
headers
,
data
=
json
.
dumps
(
data
))
# 打印预测结果
print
(
r
.
json
())
```
### 查看代码
https://github.com/PaddlePaddle/PaddleX
### 依赖
paddlepaddle >= 2.0.0
paddlehub >= 2.0.0
paddlex >= 1.3.0
modules/image/industrial_application/meter_readings/barometer_reader/module.py
0 → 100644
浏览文件 @
ac26a0e0
import
math
import
os
import
base64
from
typing
import
Union
import
argparse
import
cv2
import
numpy
as
np
import
paddlehub
as
hub
import
paddlex
as
pdx
import
paddle.nn
as
nn
from
paddlex.seg
import
transforms
as
T
from
paddlehub.module.module
import
moduleinfo
,
runnable
,
serving
METER_SHAPE
=
512
CIRCLE_CENTER
=
[
256
,
256
]
CIRCLE_RADIUS
=
250
PI
=
3.1415926536
LINE_HEIGHT
=
120
LINE_WIDTH
=
1570
TYPE_THRESHOLD
=
40
METER_CONFIG
=
[{
'scale_value'
:
25.0
/
50.0
,
'range'
:
25.0
,
'unit'
:
"(MPa)"
},
{
'scale_value'
:
1.6
/
32.0
,
'range'
:
1.6
,
'unit'
:
"(MPa)"
}]
def
base64_to_cv2
(
b64str
:
str
):
data
=
base64
.
b64decode
(
b64str
.
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
data
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
return
data
def
cv2_to_base64
(
image
:
np
.
ndarray
):
# return base64.b64encode(image)
data
=
cv2
.
imencode
(
'.jpg'
,
image
)[
1
]
return
base64
.
b64encode
(
data
.
tostring
()).
decode
(
'utf8'
)
@
moduleinfo
(
name
=
"barometer_reader"
,
type
=
"CV/image_editing"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"meter_reader implements the detection and automatic reading of traditional mechanical pointer meters based on Meter detection and pointer segmentation."
,
version
=
"1.0.0"
)
class
BarometerReader
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
BarometerReader
,
self
).
__init__
()
self
.
detector
=
pdx
.
load_model
(
os
.
path
.
join
(
self
.
directory
,
'meter_det_inference_model'
))
self
.
segmenter
=
pdx
.
load_model
(
os
.
path
.
join
(
self
.
directory
,
'meter_seg_inference_model'
))
self
.
seg_transform
=
T
.
Compose
([
T
.
Normalize
()])
def
read_process
(
self
,
label_maps
:
np
.
ndarray
):
line_images
=
self
.
creat_line_image
(
label_maps
)
scale_data
,
pointer_data
=
self
.
convert_1d_data
(
line_images
)
self
.
scale_mean_filtration
(
scale_data
)
result
=
self
.
get_meter_reader
(
scale_data
,
pointer_data
)
return
result
def
creat_line_image
(
self
,
meter_image
:
np
.
ndarray
):
line_image
=
np
.
zeros
((
LINE_HEIGHT
,
LINE_WIDTH
),
dtype
=
np
.
uint8
)
for
row
in
range
(
LINE_HEIGHT
):
for
col
in
range
(
LINE_WIDTH
):
theta
=
PI
*
2
/
LINE_WIDTH
*
(
col
+
1
)
rho
=
CIRCLE_RADIUS
-
row
-
1
x
=
int
(
CIRCLE_CENTER
[
0
]
+
rho
*
math
.
cos
(
theta
)
+
0.5
)
y
=
int
(
CIRCLE_CENTER
[
1
]
-
rho
*
math
.
sin
(
theta
)
+
0.5
)
line_image
[
row
,
col
]
=
meter_image
[
x
,
y
]
return
line_image
def
convert_1d_data
(
self
,
meter_image
:
np
.
ndarray
):
scale_data
=
np
.
zeros
((
LINE_WIDTH
),
dtype
=
np
.
uint8
)
pointer_data
=
np
.
zeros
((
LINE_WIDTH
),
dtype
=
np
.
uint8
)
for
col
in
range
(
LINE_WIDTH
):
for
row
in
range
(
LINE_HEIGHT
):
if
meter_image
[
row
,
col
]
==
1
:
pointer_data
[
col
]
+=
1
elif
meter_image
[
row
,
col
]
==
2
:
scale_data
[
col
]
+=
1
return
scale_data
,
pointer_data
def
scale_mean_filtration
(
self
,
scale_data
:
np
.
ndarray
):
mean_data
=
np
.
mean
(
scale_data
)
for
col
in
range
(
LINE_WIDTH
):
if
scale_data
[
col
]
<
mean_data
:
scale_data
[
col
]
=
0
def
get_meter_reader
(
self
,
scale_data
:
np
.
ndarray
,
pointer_data
:
np
.
ndarray
):
scale_flag
=
False
pointer_flag
=
False
one_scale_start
=
0
one_scale_end
=
0
one_pointer_start
=
0
one_pointer_end
=
0
scale_location
=
list
()
pointer_location
=
0
for
i
in
range
(
LINE_WIDTH
-
1
):
if
scale_data
[
i
]
>
0
and
scale_data
[
i
+
1
]
>
0
:
if
scale_flag
==
False
:
one_scale_start
=
i
scale_flag
=
True
if
scale_flag
:
if
scale_data
[
i
]
==
0
and
scale_data
[
i
+
1
]
==
0
:
one_scale_end
=
i
-
1
one_scale_location
=
(
one_scale_start
+
one_scale_end
)
/
2
scale_location
.
append
(
one_scale_location
)
one_scale_start
=
0
one_scale_end
=
0
scale_flag
=
False
if
pointer_data
[
i
]
>
0
and
pointer_data
[
i
+
1
]
>
0
:
if
pointer_flag
==
False
:
one_pointer_start
=
i
pointer_flag
=
True
if
pointer_flag
:
if
pointer_data
[
i
]
==
0
and
pointer_data
[
i
+
1
]
==
0
:
one_pointer_end
=
i
-
1
pointer_location
=
(
one_pointer_start
+
one_pointer_end
)
/
2
one_pointer_start
=
0
one_pointer_end
=
0
pointer_flag
=
False
scale_num
=
len
(
scale_location
)
scales
=
-
1
ratio
=
-
1
if
scale_num
>
0
:
for
i
in
range
(
scale_num
-
1
):
if
scale_location
[
i
]
<=
pointer_location
and
pointer_location
<
scale_location
[
i
+
1
]:
scales
=
i
+
(
pointer_location
-
scale_location
[
i
])
/
(
scale_location
[
i
+
1
]
-
scale_location
[
i
]
+
1e-05
)
+
1
ratio
=
(
pointer_location
-
scale_location
[
0
])
/
(
scale_location
[
scale_num
-
1
]
-
scale_location
[
0
]
+
1e-05
)
result
=
{
'scale_num'
:
scale_num
,
'scales'
:
scales
,
'ratio'
:
ratio
}
return
result
def
predict
(
self
,
im_file
:
Union
[
str
,
np
.
ndarray
],
score_threshold
:
float
=
0.5
,
seg_batch_size
:
int
=
2
,
erode_kernel
:
int
=
4
,
use_erode
:
bool
=
True
,
visualization
:
bool
=
False
,
save_dir
:
str
=
'output'
):
if
isinstance
(
im_file
,
str
):
im
=
cv2
.
imread
(
im_file
).
astype
(
'float32'
)
else
:
im
=
im_file
.
copy
()
det_results
=
self
.
detector
.
predict
(
im
)
filtered_results
=
list
()
for
res
in
det_results
:
if
res
[
'score'
]
>
score_threshold
:
filtered_results
.
append
(
res
)
resized_meters
=
list
()
for
res
in
filtered_results
:
xmin
,
ymin
,
w
,
h
=
res
[
'bbox'
]
xmin
=
max
(
0
,
int
(
xmin
))
ymin
=
max
(
0
,
int
(
ymin
))
xmax
=
min
(
im
.
shape
[
1
],
int
(
xmin
+
w
-
1
))
ymax
=
min
(
im
.
shape
[
0
],
int
(
ymin
+
h
-
1
))
sub_image
=
im
[
ymin
:(
ymax
+
1
),
xmin
:(
xmax
+
1
),
:]
# Resize the image with shape (METER_SHAPE, METER_SHAPE)
meter_shape
=
sub_image
.
shape
scale_x
=
float
(
METER_SHAPE
)
/
float
(
meter_shape
[
1
])
scale_y
=
float
(
METER_SHAPE
)
/
float
(
meter_shape
[
0
])
meter_meter
=
cv2
.
resize
(
sub_image
,
None
,
None
,
fx
=
scale_x
,
fy
=
scale_y
,
interpolation
=
cv2
.
INTER_LINEAR
)
meter_meter
=
meter_meter
.
astype
(
'float32'
)
resized_meters
.
append
(
meter_meter
)
meter_num
=
len
(
resized_meters
)
seg_results
=
list
()
for
i
in
range
(
0
,
meter_num
,
seg_batch_size
):
im_size
=
min
(
meter_num
,
i
+
seg_batch_size
)
meter_images
=
list
()
for
j
in
range
(
i
,
im_size
):
meter_images
.
append
(
resized_meters
[
j
-
i
])
result
=
self
.
segmenter
.
batch_predict
(
transforms
=
self
.
seg_transform
,
img_file_list
=
meter_images
)
if
use_erode
:
kernel
=
np
.
ones
((
erode_kernel
,
erode_kernel
),
np
.
uint8
)
for
i
in
range
(
len
(
result
)):
result
[
i
][
'label_map'
]
=
cv2
.
erode
(
result
[
i
][
'label_map'
],
kernel
)
seg_results
.
extend
(
result
)
results
=
list
()
for
i
,
seg_result
in
enumerate
(
seg_results
):
result
=
self
.
read_process
(
seg_result
[
'label_map'
])
results
.
append
(
result
)
meter_values
=
list
()
for
i
,
result
in
enumerate
(
results
):
if
result
[
'scale_num'
]
>
TYPE_THRESHOLD
:
value
=
result
[
'scales'
]
*
METER_CONFIG
[
0
][
'scale_value'
]
else
:
value
=
result
[
'scales'
]
*
METER_CONFIG
[
1
][
'scale_value'
]
meter_values
.
append
(
value
)
print
(
"-- Meter {} -- result: {} --
\n
"
.
format
(
i
,
value
))
# visualize the results
visual_results
=
list
()
for
i
,
res
in
enumerate
(
filtered_results
):
# Use `score` to represent the meter value
res
[
'score'
]
=
meter_values
[
i
]
visual_results
.
append
(
res
)
if
visualization
:
pdx
.
det
.
visualize
(
im_file
,
visual_results
,
-
1
,
save_dir
=
save_dir
)
return
visual_results
@
serving
def
serving_method
(
self
,
image
:
str
,
**
kwargs
):
"""
Run as a service.
"""
images_decode
=
base64_to_cv2
(
image
)
results
=
self
.
predict
(
im_file
=
images_decode
,
**
kwargs
)
res
=
[]
for
result
in
results
:
result
[
'category_id'
]
=
int
(
result
[
'category_id'
])
result
[
'bbox'
]
=
[
float
(
value
)
for
value
in
result
[
'bbox'
]]
result
[
'category'
]
=
str
(
result
[
'category'
])
res
.
append
(
result
)
return
res
@
runnable
def
run_cmd
(
self
,
argvs
:
list
):
"""
Run as a command.
"""
self
.
parser
=
argparse
.
ArgumentParser
(
description
=
"Run the {} module."
.
format
(
self
.
name
),
prog
=
'hub run {}'
.
format
(
self
.
name
),
usage
=
'%(prog)s'
,
add_help
=
True
)
self
.
arg_input_group
=
self
.
parser
.
add_argument_group
(
title
=
"Input options"
,
description
=
"Input data. Required"
)
self
.
arg_config_group
=
self
.
parser
.
add_argument_group
(
title
=
"Config options"
,
description
=
"Run configuration for controlling module behavior, not required."
)
self
.
add_module_input_arg
()
args
=
self
.
parser
.
parse_args
(
argvs
)
results
=
self
.
predict
(
im_file
=
args
.
input_path
)
return
results
def
add_module_input_arg
(
self
):
"""
Add the command input options.
"""
self
.
arg_input_group
.
add_argument
(
'--input_path'
,
type
=
str
,
help
=
"path to image."
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录