utils.py 14.6 KB
Newer Older
H
haoyuying 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
W
wuzewu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
H
haoyuying 已提交
14
import os
C
chenjian 已提交
15 16 17 18
from typing import Callable
from typing import List
from typing import Tuple
from typing import Union
H
haoyuying 已提交
19

H
haoyuying 已提交
20
import cv2
W
wuzewu 已提交
21
import numpy as np
C
chenjian 已提交
22
import paddle
H
haoyuying 已提交
23
import paddle.nn.functional as F
C
chenjian 已提交
24
import PIL.Image
25
from scipy.sparse import csr_matrix
H
haoyuying 已提交
26 27 28 29 30 31 32 33


def is_image_file(filename: str) -> bool:
    '''Determine whether the input file name is a valid image file name.'''
    ext = os.path.splitext(filename)[-1].lower()
    return ext in ['.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff']


H
haoyuying 已提交
34
def get_img_file(dir_name: str) -> List[str]:
H
haoyuying 已提交
35 36
    '''Get all image file paths in several directories which have the same parent directory.'''
    images = []
37
    for parent, _, filenames in os.walk(dir_name):
H
haoyuying 已提交
38 39 40 41 42
        for filename in filenames:
            if not is_image_file(filename):
                continue
            img_path = os.path.join(parent, filename)
            images.append(img_path)
43

H
haoyuying 已提交
44 45 46
    return images


H
haoyuying 已提交
47
def box_crop(boxes: np.ndarray, labels: np.ndarray, scores: np.ndarray, crop: List[int], img_shape: List[int]) -> Tuple:
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    """Crop the boxes ,labels, scores according to the given shape"""

    x, y, w, h = map(float, crop)
    im_w, im_h = map(float, img_shape)

    boxes = boxes.copy()
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] - boxes[:, 2] / 2) * im_w, (boxes[:, 0] + boxes[:, 2] / 2) * im_w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] - boxes[:, 3] / 2) * im_h, (boxes[:, 1] + boxes[:, 3] / 2) * im_h

    crop_box = np.array([x, y, x + w, y + h])
    centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0
    mask = np.logical_and(crop_box[:2] <= centers, centers <= crop_box[2:]).all(axis=1)

    boxes[:, :2] = np.maximum(boxes[:, :2], crop_box[:2])
    boxes[:, 2:] = np.minimum(boxes[:, 2:], crop_box[2:])
    boxes[:, :2] -= crop_box[:2]
    boxes[:, 2:] -= crop_box[:2]

    mask = np.logical_and(mask, (boxes[:, :2] < boxes[:, 2:]).all(axis=1))
    boxes = boxes * np.expand_dims(mask.astype('float32'), axis=1)
    labels = labels * mask.astype('float32')
    scores = scores * mask.astype('float32')
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] + boxes[:, 2]) / 2 / w, (boxes[:, 2] - boxes[:, 0]) / w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] + boxes[:, 3]) / 2 / h, (boxes[:, 3] - boxes[:, 1]) / h

    return boxes, labels, scores, mask.sum()


def box_iou_xywh(box1: np.ndarray, box2: np.ndarray) -> float:
    """Calculate iou by xywh"""

    assert box1.shape[-1] == 4, "Box1 shape[-1] should be 4."
    assert box2.shape[-1] == 4, "Box2 shape[-1] should be 4."

    b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
    b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
    b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
    b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2

    inter_x1 = np.maximum(b1_x1, b2_x1)
    inter_x2 = np.minimum(b1_x2, b2_x2)
    inter_y1 = np.maximum(b1_y1, b2_y1)
    inter_y2 = np.minimum(b1_y2, b2_y2)
    inter_w = inter_x2 - inter_x1
    inter_h = inter_y2 - inter_y1
    inter_w[inter_w < 0] = 0
    inter_h[inter_h < 0] = 0

    inter_area = inter_w * inter_h
    b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
    b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)

    return inter_area / (b1_area + b2_area - inter_area)


def draw_boxes_on_image(image_path: str,
                        boxes: np.ndarray,
                        scores: np.ndarray,
                        labels: np.ndarray,
H
haoyuying 已提交
107
                        label_names: List[str],
H
haoyuying 已提交
108 109
                        score_thresh: float = 0.5,
                        save_path: str = 'result'):
110
    """Draw boxes on images."""
111 112 113 114
    # On windows, importing paddlenlp and matplotlib at the same time will cause python
    # to fail to catch C++ exceptions. Delay matplotlib to avoid this problem.
    import matplotlib as plt

115
    image = np.array(PIL.Image.open(image_path))
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    plt.figure()
    _, ax = plt.subplots(1)
    ax.imshow(image)

    image_name = image_path.split('/')[-1]
    print("Image {} detect: ".format(image_name))
    colors = {}
    for box, score, label in zip(boxes, scores, labels):
        if score < score_thresh:
            continue
        if box[2] <= box[0] or box[3] <= box[1]:
            continue
        label = int(label)
        if label not in colors:
            colors[label] = plt.get_cmap('hsv')(label / len(label_names))
        x1, y1, x2, y2 = box[0], box[1], box[2], box[3]
        rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, linewidth=2.0, edgecolor=colors[label])
        ax.add_patch(rect)
C
chenjian 已提交
134 135 136 137 138 139 140 141 142 143 144 145
        ax.text(x1,
                y1,
                '{} {:.4f}'.format(label_names[label], score),
                verticalalignment='bottom',
                horizontalalignment='left',
                bbox={
                    'facecolor': colors[label],
                    'alpha': 0.5,
                    'pad': 0
                },
                fontsize=8,
                color='white')
146 147 148 149 150
        print("\t {:15s} at {:25} score: {:.5f}".format(label_names[int(label)], str(list(map(int, list(box)))), score))
    image_name = image_name.replace('jpg', 'png')
    plt.axis('off')
    plt.gca().xaxis.set_major_locator(plt.NullLocator())
    plt.gca().yaxis.set_major_locator(plt.NullLocator())
H
haoyuying 已提交
151
    plt.savefig("{}/{}".format(save_path, image_name), bbox_inches='tight', pad_inches=0.0)
152 153 154 155
    plt.cla()
    plt.close('all')


H
haoyuying 已提交
156
def get_label_infos(file_list: str) -> str:
H
haoyuying 已提交
157
    """Get label names by corresponding category ids."""
158
    from pycocotools.coco import COCO
H
haoyuying 已提交
159 160 161 162 163 164
    map_label = COCO(file_list)
    label_names = []
    categories = map_label.loadCats(map_label.getCatIds())
    for category in categories:
        label_names.append(category['name'])
    return label_names
H
haoyuying 已提交
165 166


H
haoyuying 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
def subtract_imagenet_mean_batch(batch: paddle.Tensor) -> paddle.Tensor:
    """Subtract ImageNet mean pixel-wise from a BGR image."""
    mean = np.zeros(shape=batch.shape, dtype='float32')
    mean[:, 0, :, :] = 103.939
    mean[:, 1, :, :] = 116.779
    mean[:, 2, :, :] = 123.680
    mean = paddle.to_tensor(mean)
    return batch - mean


def gram_matrix(data: paddle.Tensor) -> paddle.Tensor:
    """Get gram matrix"""
    b, ch, h, w = data.shape
    features = data.reshape((b, ch, w * h))
    features_t = features.transpose((0, 2, 1))
    gram = features.bmm(features_t) / (ch * h * w)
    return gram
H
haoyuying 已提交
184 185


H
haoyuying 已提交
186
def npmax(array: np.ndarray) -> Tuple[int]:
H
haoyuying 已提交
187 188 189 190 191 192
    """Get max value and index."""
    arrayindex = array.argmax(1)
    arrayvalue = array.max(1)
    i = arrayvalue.argmax()
    j = arrayindex[i]
    return i, j
H
haoyuying 已提交
193 194


195
def visualize(image: Union[np.ndarray, str], result: np.ndarray, weight: float = 0.6) -> np.ndarray:
H
haoyuying 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    """
    Convert segmentation result to color image, and save added image.

    Args:
        image (str|np.ndarray): The path of origin image or bgr image.
        result (np.ndarray): The predict result of image.
        weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6

    Returns:
        vis_result (np.ndarray): return the visualized result.
    """

    color_map = get_color_map_list(256)
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    color_map = np.array(color_map).astype("uint8")
    # Use OpenCV LUT for color mapping
    c1 = cv2.LUT(result, color_map[:, 0])
    c2 = cv2.LUT(result, color_map[:, 1])
    c3 = cv2.LUT(result, color_map[:, 2])
    pseudo_img = np.dstack((c1, c2, c3))
    if isinstance(image, str):
        im = cv2.imread(image)
    else:
        im = image
    vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0)

    return vis_result


def get_pseudo_color_map(pred: np.ndarray) -> PIL.Image.Image:
    '''visualization the segmentation mask.'''
    pred_mask = PIL.Image.fromarray(pred.astype(np.uint8), mode='P')
    color_map = get_color_map_list(256)
    pred_mask.putpalette(color_map)
    return pred_mask


def get_color_map_list(num_classes: int) -> List[int]:
    """
    Returns the color map for visualizing the segmentation mask,
    which can support arbitrary number of classes.

    Args:
        num_classes (int): Number of classes.

    Returns:
        (list). The color map.
    """

    num_classes += 1
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = color_map[3:]
    return color_map


def get_reverse_list(ori_shape: List[int], transforms: List[Callable]) -> List[tuple]:
    """
    get reverse list of transform.

    Args:
        ori_shape (list): Origin shape of image.
        transforms (list): List of transform.

    Returns:
        list: List of tuple, there are two format:
            ('resize', (h, w)) The image shape before resize,
            ('padding', (h, w)) The image shape before padding.
    """
    reverse_list = []
    h, w = ori_shape[0], ori_shape[1]
    for op in transforms:
        if op.__class__.__name__ in ['Resize', 'ResizeByLong']:
            reverse_list.append(('resize', (h, w)))
            h, w = op.target_size[0], op.target_size[1]
        if op.__class__.__name__ in ['Padding']:
            reverse_list.append(('padding', (h, w)))
            w, h = op.target_size[0], op.target_size[1]
    return reverse_list


def reverse_transform(pred: paddle.Tensor, ori_shape: List[int], transforms: List[int]) -> paddle.Tensor:
    """recover pred to origin shape"""
    reverse_list = get_reverse_list(ori_shape, transforms)
    for item in reverse_list[::-1]:
        if item[0] == 'resize':
            h, w = item[1][0], item[1][1]
            pred = F.interpolate(pred, (h, w), mode='nearest')
        elif item[0] == 'padding':
            h, w = item[1][0], item[1][1]
            pred = pred[:, :, 0:h, 0:w]
        else:
            raise Exception("Unexpected info '{}' in im_info".format(item[0]))
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    return pred


class ConfusionMatrix(object):
    """
    Confusion Matrix for segmentation evaluation.

    Args:
        num_classes (int): Number of categories of the confusion matrix.
        streaming (bool): Whether to use streaming mode. If the value is set to True, the data will be
                          accumulated every time the `calculate` interface is called. Default to False.
    """

    def __init__(self, num_classes: int, streaming: bool = False):
        self.confusion_matrix = np.zeros([num_classes, num_classes], dtype='int64')
        self.num_classes = num_classes
        self.streaming = streaming

    def calculate(self, pred, label, ignore=None):
        # If not in streaming mode, clear matrix everytime when call `calculate`
        if not self.streaming:
            self.zero_matrix()

        mask = np.array(ignore) == 1

        label = np.asarray(label)[mask]
        pred = np.asarray(pred)[mask]
        one = np.ones_like(pred)
        # Accumuate ([row=label, col=pred], 1) into sparse matrix
        spm = csr_matrix((one, (label, pred)), shape=(self.num_classes, self.num_classes))
        spm = spm.todense()
        self.confusion_matrix += spm

    def zero_matrix(self):
        """ Clear confusion matrix """
        self.confusion_matrix = np.zeros([self.num_classes, self.num_classes], dtype='int64')

    def mean_iou(self) -> float:
        iou_list = []
        avg_iou = 0
        # TODO: use numpy sum axis api to simpliy
        vji = np.zeros(self.num_classes, dtype=int)
        vij = np.zeros(self.num_classes, dtype=int)
        for j in range(self.num_classes):
            v_j = 0
            for i in range(self.num_classes):
                v_j += self.confusion_matrix[j][i]
            vji[j] = v_j

        for i in range(self.num_classes):
            v_i = 0
            for j in range(self.num_classes):
                v_i += self.confusion_matrix[j][i]
            vij[i] = v_i

        for c in range(self.num_classes):
            total = vji[c] + vij[c] - self.confusion_matrix[c][c]
            if total == 0:
                iou = 0
            else:
                iou = float(self.confusion_matrix[c][c]) / total
            avg_iou += iou
            iou_list.append(iou)
        avg_iou = float(avg_iou) / float(self.num_classes)
        return np.array(iou_list), avg_iou

    def accuracy(self) -> float:
        total = self.confusion_matrix.sum()
        total_right = 0
        for c in range(self.num_classes):
            total_right += self.confusion_matrix[c][c]
        if total == 0:
            avg_acc = 0
        else:
            avg_acc = float(total_right) / total

        vij = np.zeros(self.num_classes, dtype=int)
        for i in range(self.num_classes):
            v_i = 0
            for j in range(self.num_classes):
                v_i += self.confusion_matrix[j][i]
            vij[i] = v_i

        acc_list = []
        for c in range(self.num_classes):
            if vij[c] == 0:
                acc = 0
            else:
                acc = self.confusion_matrix[c][c] / float(vij[c])
            acc_list.append(acc)
        return np.array(acc_list), avg_acc

    def kappa(self) -> float:
        vji = np.zeros(self.num_classes)
        vij = np.zeros(self.num_classes)
        for j in range(self.num_classes):
            v_j = 0
            for i in range(self.num_classes):
                v_j += self.confusion_matrix[j][i]
            vji[j] = v_j

        for i in range(self.num_classes):
            v_i = 0
            for j in range(self.num_classes):
                v_i += self.confusion_matrix[j][i]
            vij[i] = v_i

        total = self.confusion_matrix.sum()

        # avoid spillovers
        # TODO: is it reasonable to hard code 10000.0?
        total = float(total) / 10000.0
        vji = vji / 10000.0
        vij = vij / 10000.0

        tp = 0
        tc = 0
        for c in range(self.num_classes):
            tp += vji[c] * vij[c]
            tc += self.confusion_matrix[c][c]

        tc = tc / 10000.0
        pe = tp / (total * total)
        po = tc / total

        kappa = (po - pe) / (1 - pe)
        return kappa