utils.py 6.6 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

H
haoyuying 已提交
15 16
import os

H
haoyuying 已提交
17
import paddle
18
import PIL
W
wuzewu 已提交
19
import numpy as np
20
import matplotlib as plt
H
haoyuying 已提交
21 22 23 24 25 26 27 28 29 30 31


def is_image_file(filename: str) -> bool:
    '''Determine whether the input file name is a valid image file name.'''
    ext = os.path.splitext(filename)[-1].lower()
    return ext in ['.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff']


def get_img_file(dir_name: str) -> list:
    '''Get all image file paths in several directories which have the same parent directory.'''
    images = []
32
    for parent, _, filenames in os.walk(dir_name):
H
haoyuying 已提交
33 34 35 36 37
        for filename in filenames:
            if not is_image_file(filename):
                continue
            img_path = os.path.join(parent, filename)
            images.append(img_path)
38

H
haoyuying 已提交
39 40 41
    return images


42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
def box_crop(boxes: np.ndarray, labels: np.ndarray, scores: np.ndarray, crop: list, img_shape: list):
    """Crop the boxes ,labels, scores according to the given shape"""

    x, y, w, h = map(float, crop)
    im_w, im_h = map(float, img_shape)

    boxes = boxes.copy()
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] - boxes[:, 2] / 2) * im_w, (boxes[:, 0] + boxes[:, 2] / 2) * im_w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] - boxes[:, 3] / 2) * im_h, (boxes[:, 1] + boxes[:, 3] / 2) * im_h

    crop_box = np.array([x, y, x + w, y + h])
    centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0
    mask = np.logical_and(crop_box[:2] <= centers, centers <= crop_box[2:]).all(axis=1)

    boxes[:, :2] = np.maximum(boxes[:, :2], crop_box[:2])
    boxes[:, 2:] = np.minimum(boxes[:, 2:], crop_box[2:])
    boxes[:, :2] -= crop_box[:2]
    boxes[:, 2:] -= crop_box[:2]

    mask = np.logical_and(mask, (boxes[:, :2] < boxes[:, 2:]).all(axis=1))
    boxes = boxes * np.expand_dims(mask.astype('float32'), axis=1)
    labels = labels * mask.astype('float32')
    scores = scores * mask.astype('float32')
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] + boxes[:, 2]) / 2 / w, (boxes[:, 2] - boxes[:, 0]) / w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] + boxes[:, 3]) / 2 / h, (boxes[:, 3] - boxes[:, 1]) / h

    return boxes, labels, scores, mask.sum()


def box_iou_xywh(box1: np.ndarray, box2: np.ndarray) -> float:
    """Calculate iou by xywh"""

    assert box1.shape[-1] == 4, "Box1 shape[-1] should be 4."
    assert box2.shape[-1] == 4, "Box2 shape[-1] should be 4."

    b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
    b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
    b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
    b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2

    inter_x1 = np.maximum(b1_x1, b2_x1)
    inter_x2 = np.minimum(b1_x2, b2_x2)
    inter_y1 = np.maximum(b1_y1, b2_y1)
    inter_y2 = np.minimum(b1_y2, b2_y2)
    inter_w = inter_x2 - inter_x1
    inter_h = inter_y2 - inter_y1
    inter_w[inter_w < 0] = 0
    inter_h[inter_h < 0] = 0

    inter_area = inter_w * inter_h
    b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
    b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)

    return inter_area / (b1_area + b2_area - inter_area)


def draw_boxes_on_image(image_path: str,
                        boxes: np.ndarray,
                        scores: np.ndarray,
                        labels: np.ndarray,
                        label_names: list,
H
haoyuying 已提交
103 104
                        score_thresh: float = 0.5,
                        save_path: str = 'result'):
105
    """Draw boxes on images."""
106
    image = np.array(PIL.Image.open(image_path))
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    plt.figure()
    _, ax = plt.subplots(1)
    ax.imshow(image)

    image_name = image_path.split('/')[-1]
    print("Image {} detect: ".format(image_name))
    colors = {}
    for box, score, label in zip(boxes, scores, labels):
        if score < score_thresh:
            continue
        if box[2] <= box[0] or box[3] <= box[1]:
            continue
        label = int(label)
        if label not in colors:
            colors[label] = plt.get_cmap('hsv')(label / len(label_names))
        x1, y1, x2, y2 = box[0], box[1], box[2], box[3]
        rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, linewidth=2.0, edgecolor=colors[label])
        ax.add_patch(rect)
H
haoyuying 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137
        ax.text(
            x1,
            y1,
            '{} {:.4f}'.format(label_names[label], score),
            verticalalignment='bottom',
            horizontalalignment='left',
            bbox={
                'facecolor': colors[label],
                'alpha': 0.5,
                'pad': 0
            },
            fontsize=8,
            color='white')
138 139 140 141 142
        print("\t {:15s} at {:25} score: {:.5f}".format(label_names[int(label)], str(list(map(int, list(box)))), score))
    image_name = image_name.replace('jpg', 'png')
    plt.axis('off')
    plt.gca().xaxis.set_major_locator(plt.NullLocator())
    plt.gca().yaxis.set_major_locator(plt.NullLocator())
H
haoyuying 已提交
143
    plt.savefig("{}/{}".format(save_path, image_name), bbox_inches='tight', pad_inches=0.0)
144 145 146 147
    plt.cla()
    plt.close('all')


H
haoyuying 已提交
148 149
def get_label_infos(file_list: str):
    """Get label names by corresponding category ids."""
150
    from pycocotools.coco import COCO
H
haoyuying 已提交
151 152 153 154 155 156
    map_label = COCO(file_list)
    label_names = []
    categories = map_label.loadCats(map_label.getCatIds())
    for category in categories:
        label_names.append(category['name'])
    return label_names
H
haoyuying 已提交
157 158


H
haoyuying 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
def subtract_imagenet_mean_batch(batch: paddle.Tensor) -> paddle.Tensor:
    """Subtract ImageNet mean pixel-wise from a BGR image."""
    mean = np.zeros(shape=batch.shape, dtype='float32')
    mean[:, 0, :, :] = 103.939
    mean[:, 1, :, :] = 116.779
    mean[:, 2, :, :] = 123.680
    mean = paddle.to_tensor(mean)
    return batch - mean


def gram_matrix(data: paddle.Tensor) -> paddle.Tensor:
    """Get gram matrix"""
    b, ch, h, w = data.shape
    features = data.reshape((b, ch, w * h))
    features_t = features.transpose((0, 2, 1))
    gram = features.bmm(features_t) / (ch * h * w)
    return gram
H
haoyuying 已提交
176 177 178 179 180 181 182 183 184


def npmax(array: np.ndarray):
    """Get max value and index."""
    arrayindex = array.argmax(1)
    arrayvalue = array.max(1)
    i = arrayvalue.argmax()
    j = arrayindex[i]
    return i, j