module.py 5.7 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import copy
C
chenjian 已提交
16
import os
C
chenjian 已提交
17 18

import cv2
C
chenjian 已提交
19 20
import numpy as np
import paddle
C
chenjian 已提交
21
from skimage.io import imread
C
chenjian 已提交
22 23
from skimage.transform import rescale
from skimage.transform import resize
C
chenjian 已提交
24

C
chenjian 已提交
25
import paddlehub as hub
C
chenjian 已提交
26 27
from .model import LapStylePredictor
from .util import base64_to_cv2
C
chenjian 已提交
28 29 30
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
C
chenjian 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149


@moduleinfo(
    name="lapstyle_ocean",
    type="CV/style_transfer",
    author="paddlepaddle",
    author_email="",
    summary="",
    version="1.0.0")
class Lapstyle_ocean:
    def __init__(self):
        self.pretrained_model = os.path.join(self.directory, "lapstyle_ocean.pdparams")

        self.network = LapStylePredictor(weight_path=self.pretrained_model)

    def style_transfer(self,
                       images=None,
                       paths=None,
                       output_dir='./transfer_result/',
                       use_gpu=False,
                       visualization=True):
        '''
        Transfer a image to ocean style.

        images (list[dict]): data of images, 每一个元素都为一个 dict,有关键字 content, style, 相应取值为:
          - content (numpy.ndarray): 待转换的图片,shape 为 \[H, W, C\],BGR格式;<br/>
          - style (numpy.ndarray) : 风格图像,shape为 \[H, W, C\],BGR格式;<br/>
        paths (list[str]): paths to images, 每一个元素都为一个dict, 有关键字 content, style, 相应取值为:
          - content (str): 待转换的图片的路径;<br/>
          - style (str) : 风格图像的路径;<br/>

        output_dir: the dir to save the results
        use_gpu: if True, use gpu to perform the computation, otherwise cpu.
        visualization: if True, save results in output_dir.
        '''
        results = []
        paddle.disable_static()
        place = 'gpu:0' if use_gpu else 'cpu'
        place = paddle.set_device(place)
        if images == None and paths == None:
            print('No image provided. Please input an image or a image path.')
            return

        if images != None:
            for image_dict in images:
                content_img = image_dict['content']
                style_img = image_dict['style']
                results.append(self.network.run(content_img, style_img))

        if paths != None:
            for path_dict in paths:
                content_img = cv2.imread(path_dict['content'])
                style_img = cv2.imread(path_dict['style'])
                results.append(self.network.run(content_img, style_img))

        if visualization == True:
            if not os.path.exists(output_dir):
                os.makedirs(output_dir, exist_ok=True)
            for i, out in enumerate(results):
                cv2.imwrite(os.path.join(output_dir, 'output_{}.png'.format(i)), out[:, :, ::-1])

        return results

    @runnable
    def run_cmd(self, argvs: list):
        """
        Run as a command.
        """
        self.parser = argparse.ArgumentParser(
            description="Run the {} module.".format(self.name),
            prog='hub run {}'.format(self.name),
            usage='%(prog)s',
            add_help=True)

        self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
        self.arg_config_group = self.parser.add_argument_group(
            title="Config options", description="Run configuration for controlling module behavior, not required.")
        self.add_module_config_arg()
        self.add_module_input_arg()
        self.args = self.parser.parse_args(argvs)

        self.style_transfer(
            paths=[{
                'content': self.args.content,
                'style': self.args.style
            }],
            output_dir=self.args.output_dir,
            use_gpu=self.args.use_gpu,
            visualization=self.args.visualization)

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = copy.deepcopy(images)
        for image in images_decode:
            image['content'] = base64_to_cv2(image['content'])
            image['style'] = base64_to_cv2(image['style'])
        results = self.style_transfer(images_decode, **kwargs)
        tolist = [result.tolist() for result in results]
        return tolist

    def add_module_config_arg(self):
        """
        Add the command config options.
        """
        self.arg_config_group.add_argument('--use_gpu', action='store_true', help="use GPU or not")

        self.arg_config_group.add_argument(
            '--output_dir', type=str, default='transfer_result', help='output directory for saving result.')
        self.arg_config_group.add_argument('--visualization', type=bool, default=False, help='save results or not.')

    def add_module_input_arg(self):
        """
        Add the command input options.
        """
        self.arg_input_group.add_argument('--content', type=str, help="path to content image.")
        self.arg_input_group.add_argument('--style', type=str, help="path to style image.")