Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
afd9111b
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
afd9111b
编写于
12月 07, 2021
作者:
C
chenjian
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add lapstyle_ocean module
上级
b3f19bfc
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
440 addition
and
0 deletion
+440
-0
modules/image/Image_gan/style_transfer/lapstyle_ocean/README.md
...s/image/Image_gan/style_transfer/lapstyle_ocean/README.md
+142
-0
modules/image/Image_gan/style_transfer/lapstyle_ocean/model.py
...es/image/Image_gan/style_transfer/lapstyle_ocean/model.py
+140
-0
modules/image/Image_gan/style_transfer/lapstyle_ocean/module.py
...s/image/Image_gan/style_transfer/lapstyle_ocean/module.py
+147
-0
modules/image/Image_gan/style_transfer/lapstyle_ocean/requirements.txt
.../Image_gan/style_transfer/lapstyle_ocean/requirements.txt
+1
-0
modules/image/Image_gan/style_transfer/lapstyle_ocean/util.py
...les/image/Image_gan/style_transfer/lapstyle_ocean/util.py
+10
-0
未找到文件。
modules/image/Image_gan/style_transfer/lapstyle_ocean/README.md
0 → 100644
浏览文件 @
afd9111b
# lapstyle_ocean
|模型名称|lapstyle_ocean|
| :--- | :---: |
|类别|图像 - 风格迁移|
|网络|LapStyle|
|数据集|-|
|是否支持Fine-tuning|否|
|模型大小|121MB|
|最新更新日期|2021-12-07|
|数据指标|-|
## 一、模型基本信息
-
### 应用效果展示
-
样例结果示例:
<p
align=
"center"
>
<img
src=
"https://user-images.githubusercontent.com/22424850/144995283-77ddba45-9efe-4f72-914c-1bff734372ed.png"
width =
"50%"
hspace=
'10'
/>
<br
/>
输入内容图形
<br
/>
<img
src=
"https://user-images.githubusercontent.com/22424850/144997958-9162c304-dff4-4048-a197-607882ded00c.png"
width =
"50%"
hspace=
'10'
/>
<br
/>
输入风格图形
<br
/>
<img
src=
"https://user-images.githubusercontent.com/22424850/144997967-43d7579c-cc73-452e-a920-5759eb5a5d67.png"
width =
"50%"
hspace=
'10'
/>
<br
/>
输出图像
<br
/>
</p>
-
### 模型介绍
-
LapStyle--拉普拉斯金字塔风格化网络,是一种能够生成高质量风格化图的快速前馈风格化网络,能渐进地生成复杂的纹理迁移效果,同时能够在512分辨率下达到100fps的速度。可实现多种不同艺术风格的快速迁移,在艺术图像生成、滤镜等领域有广泛的应用。
-
更多详情参考:
[
Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality Artistic Style Transfer
](
https://arxiv.org/pdf/2104.05376.pdf
)
## 二、安装
-
### 1、环境依赖
-
ppgan
-
### 2、安装
-
```shell
$ hub install lapstyle_ocean
```
-
如您安装时遇到问题,可参考:
[
零基础windows安装
](
../../../../docs/docs_ch/get_start/windows_quickstart.md
)
|
[
零基础Linux安装
](
../../../../docs/docs_ch/get_start/linux_quickstart.md
)
|
[
零基础MacOS安装
](
../../../../docs/docs_ch/get_start/mac_quickstart.md
)
## 三、模型API预测
-
### 1、命令行预测
-
```shell
# Read from a file
$ hub run lapstyle_ocean --content "/PATH/TO/IMAGE" --style "/PATH/TO/IMAGE1"
```
-
通过命令行方式实现风格转换模型的调用,更多请见
[
PaddleHub命令行指令
](
../../../../docs/docs_ch/tutorial/cmd_usage.rst
)
-
### 2、预测代码示例
-
```python
import paddlehub as hub
module = hub.Module(name="lapstyle_ocean")
content = cv2.imread("/PATH/TO/IMAGE")
style = cv2.imread("/PATH/TO/IMAGE1")
results = module.style_transfer(images=[{'content':content, 'style':style}], output_dir='./transfer_result', use_gpu=True)
```
-
### 3、API
-
```python
style_transfer(images=None, paths=None, output_dir='./transfer_result/', use_gpu=False, visualization=True)
```
-
风格转换API。
- **参数**
- images (list[dict]): data of images, 每一个元素都为一个 dict,有关键字 content, style, 相应取值为:
- content (numpy.ndarray): 待转换的图片,shape 为 \[H, W, C\],BGR格式;<br/>
- style (numpy.ndarray) : 风格图像,shape为 \[H, W, C\],BGR格式;<br/>
- paths (list[str]): paths to images, 每一个元素都为一个dict, 有关键字 content, style, 相应取值为:
- content (str): 待转换的图片的路径;<br/>
- style (str) : 风格图像的路径;<br/>
- output\_dir (str): 结果保存的路径; <br/>
- use\_gpu (bool): 是否使用 GPU;<br/>
- visualization(bool): 是否保存结果到本地文件夹
## 四、服务部署
-
PaddleHub Serving可以部署一个在线图像风格转换服务。
-
### 第一步:启动PaddleHub Serving
-
运行启动命令:
-
```shell
$ hub serving start -m lapstyle_ocean
```
-
这样就完成了一个图像风格转换的在线服务API的部署,默认端口号为8866。
-
**NOTE:**
如使用GPU预测,则需要在启动服务之前,请设置CUDA
\_
VISIBLE
\_
DEVICES环境变量,否则不用设置。
-
### 第二步:发送预测请求
-
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
-
```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[{'content': cv2_to_base64(cv2.imread("/PATH/TO/IMAGE")), 'style': cv2_to_base64(cv2.imread("/PATH/TO/IMAGE1"))}]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/lapstyle_ocean"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
## 五、更新历史
* 1.0.0
初始发布
- ```
shell
$ hub install lapstyle_ocean==1.0.0
```
modules/image/Image_gan/style_transfer/lapstyle_ocean/model.py
0 → 100644
浏览文件 @
afd9111b
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
cv2
as
cv
import
numpy
as
np
import
urllib.request
from
PIL
import
Image
import
paddle
import
paddle.nn.functional
as
F
from
paddle.vision.transforms
import
functional
from
ppgan.utils.visual
import
tensor2img
from
ppgan.models.generators
import
DecoderNet
,
Encoder
,
RevisionNet
def
img
(
img
):
# some images have 4 channels
if
img
.
shape
[
2
]
>
3
:
img
=
img
[:,
:,
:
3
]
# HWC to CHW
return
img
def
img_totensor
(
content_img
,
style_img
):
if
content_img
.
ndim
==
2
:
content_img
=
cv
.
cvtColor
(
content_img
,
cv
.
COLOR_GRAY2RGB
)
else
:
content_img
=
cv
.
cvtColor
(
content_img
,
cv
.
COLOR_BGR2RGB
)
h
,
w
,
c
=
content_img
.
shape
content_img
=
Image
.
fromarray
(
content_img
)
content_img
=
content_img
.
resize
((
512
,
512
),
Image
.
BILINEAR
)
content_img
=
np
.
array
(
content_img
)
content_img
=
img
(
content_img
)
content_img
=
functional
.
to_tensor
(
content_img
)
style_img
=
cv
.
cvtColor
(
style_img
,
cv
.
COLOR_BGR2RGB
)
style_img
=
Image
.
fromarray
(
style_img
)
style_img
=
style_img
.
resize
((
512
,
512
),
Image
.
BILINEAR
)
style_img
=
np
.
array
(
style_img
)
style_img
=
img
(
style_img
)
style_img
=
functional
.
to_tensor
(
style_img
)
content_img
=
paddle
.
unsqueeze
(
content_img
,
axis
=
0
)
style_img
=
paddle
.
unsqueeze
(
style_img
,
axis
=
0
)
return
content_img
,
style_img
,
h
,
w
def
tensor_resample
(
tensor
,
dst_size
,
mode
=
'bilinear'
):
return
F
.
interpolate
(
tensor
,
dst_size
,
mode
=
mode
,
align_corners
=
False
)
def
laplacian
(
x
):
"""
Laplacian
return:
x - upsample(downsample(x))
"""
return
x
-
tensor_resample
(
tensor_resample
(
x
,
[
x
.
shape
[
2
]
//
2
,
x
.
shape
[
3
]
//
2
]),
[
x
.
shape
[
2
],
x
.
shape
[
3
]])
def
make_laplace_pyramid
(
x
,
levels
):
"""
Make Laplacian Pyramid
"""
pyramid
=
[]
current
=
x
for
i
in
range
(
levels
):
pyramid
.
append
(
laplacian
(
current
))
current
=
tensor_resample
(
current
,
(
max
(
current
.
shape
[
2
]
//
2
,
1
),
max
(
current
.
shape
[
3
]
//
2
,
1
)))
pyramid
.
append
(
current
)
return
pyramid
def
fold_laplace_pyramid
(
pyramid
):
"""
Fold Laplacian Pyramid
"""
current
=
pyramid
[
-
1
]
for
i
in
range
(
len
(
pyramid
)
-
2
,
-
1
,
-
1
):
# iterate from len-2 to 0
up_h
,
up_w
=
pyramid
[
i
].
shape
[
2
],
pyramid
[
i
].
shape
[
3
]
current
=
pyramid
[
i
]
+
tensor_resample
(
current
,
(
up_h
,
up_w
))
return
current
class
LapStylePredictor
:
def
__init__
(
self
,
weight_path
=
None
):
self
.
net_enc
=
Encoder
()
self
.
net_dec
=
DecoderNet
()
self
.
net_rev
=
RevisionNet
()
self
.
net_rev_2
=
RevisionNet
()
self
.
net_enc
.
set_dict
(
paddle
.
load
(
weight_path
)[
'net_enc'
])
self
.
net_enc
.
eval
()
self
.
net_dec
.
set_dict
(
paddle
.
load
(
weight_path
)[
'net_dec'
])
self
.
net_dec
.
eval
()
self
.
net_rev
.
set_dict
(
paddle
.
load
(
weight_path
)[
'net_rev'
])
self
.
net_rev
.
eval
()
self
.
net_rev_2
.
set_dict
(
paddle
.
load
(
weight_path
)[
'net_rev_2'
])
self
.
net_rev_2
.
eval
()
def
run
(
self
,
content_img
,
style_image
):
content_img
,
style_img
,
h
,
w
=
img_totensor
(
content_img
,
style_image
)
pyr_ci
=
make_laplace_pyramid
(
content_img
,
2
)
pyr_si
=
make_laplace_pyramid
(
style_img
,
2
)
pyr_ci
.
append
(
content_img
)
pyr_si
.
append
(
style_img
)
cF
=
self
.
net_enc
(
pyr_ci
[
2
])
sF
=
self
.
net_enc
(
pyr_si
[
2
])
stylized_small
=
self
.
net_dec
(
cF
,
sF
)
stylized_up
=
F
.
interpolate
(
stylized_small
,
scale_factor
=
2
)
revnet_input
=
paddle
.
concat
(
x
=
[
pyr_ci
[
1
],
stylized_up
],
axis
=
1
)
stylized_rev_lap
=
self
.
net_rev
(
revnet_input
)
stylized_rev
=
fold_laplace_pyramid
([
stylized_rev_lap
,
stylized_small
])
stylized_up
=
F
.
interpolate
(
stylized_rev
,
scale_factor
=
2
)
revnet_input
=
paddle
.
concat
(
x
=
[
pyr_ci
[
0
],
stylized_up
],
axis
=
1
)
stylized_rev_lap_second
=
self
.
net_rev_2
(
revnet_input
)
stylized_rev_second
=
fold_laplace_pyramid
([
stylized_rev_lap_second
,
stylized_rev_lap
,
stylized_small
])
stylized
=
stylized_rev_second
stylized_visual
=
tensor2img
(
stylized
,
min_max
=
(
0.
,
1.
))
return
stylized_visual
modules/image/Image_gan/style_transfer/lapstyle_ocean/module.py
0 → 100644
浏览文件 @
afd9111b
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
argparse
import
copy
import
paddle
import
paddlehub
as
hub
from
paddlehub.module.module
import
moduleinfo
,
runnable
,
serving
import
numpy
as
np
import
cv2
from
skimage.io
import
imread
from
skimage.transform
import
rescale
,
resize
from
.model
import
LapStylePredictor
from
.util
import
base64_to_cv2
@
moduleinfo
(
name
=
"lapstyle_ocean"
,
type
=
"CV/style_transfer"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
""
,
version
=
"1.0.0"
)
class
Lapstyle_ocean
:
def
__init__
(
self
):
self
.
pretrained_model
=
os
.
path
.
join
(
self
.
directory
,
"lapstyle_ocean.pdparams"
)
self
.
network
=
LapStylePredictor
(
weight_path
=
self
.
pretrained_model
)
def
style_transfer
(
self
,
images
=
None
,
paths
=
None
,
output_dir
=
'./transfer_result/'
,
use_gpu
=
False
,
visualization
=
True
):
'''
Transfer a image to ocean style.
images (list[dict]): data of images, 每一个元素都为一个 dict,有关键字 content, style, 相应取值为:
- content (numpy.ndarray): 待转换的图片,shape 为 \[H, W, C\],BGR格式;<br/>
- style (numpy.ndarray) : 风格图像,shape为 \[H, W, C\],BGR格式;<br/>
paths (list[str]): paths to images, 每一个元素都为一个dict, 有关键字 content, style, 相应取值为:
- content (str): 待转换的图片的路径;<br/>
- style (str) : 风格图像的路径;<br/>
output_dir: the dir to save the results
use_gpu: if True, use gpu to perform the computation, otherwise cpu.
visualization: if True, save results in output_dir.
'''
results
=
[]
paddle
.
disable_static
()
place
=
'gpu:0'
if
use_gpu
else
'cpu'
place
=
paddle
.
set_device
(
place
)
if
images
==
None
and
paths
==
None
:
print
(
'No image provided. Please input an image or a image path.'
)
return
if
images
!=
None
:
for
image_dict
in
images
:
content_img
=
image_dict
[
'content'
]
style_img
=
image_dict
[
'style'
]
results
.
append
(
self
.
network
.
run
(
content_img
,
style_img
))
if
paths
!=
None
:
for
path_dict
in
paths
:
content_img
=
cv2
.
imread
(
path_dict
[
'content'
])
style_img
=
cv2
.
imread
(
path_dict
[
'style'
])
results
.
append
(
self
.
network
.
run
(
content_img
,
style_img
))
if
visualization
==
True
:
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
for
i
,
out
in
enumerate
(
results
):
cv2
.
imwrite
(
os
.
path
.
join
(
output_dir
,
'output_{}.png'
.
format
(
i
)),
out
[:,
:,
::
-
1
])
return
results
@
runnable
def
run_cmd
(
self
,
argvs
:
list
):
"""
Run as a command.
"""
self
.
parser
=
argparse
.
ArgumentParser
(
description
=
"Run the {} module."
.
format
(
self
.
name
),
prog
=
'hub run {}'
.
format
(
self
.
name
),
usage
=
'%(prog)s'
,
add_help
=
True
)
self
.
arg_input_group
=
self
.
parser
.
add_argument_group
(
title
=
"Input options"
,
description
=
"Input data. Required"
)
self
.
arg_config_group
=
self
.
parser
.
add_argument_group
(
title
=
"Config options"
,
description
=
"Run configuration for controlling module behavior, not required."
)
self
.
add_module_config_arg
()
self
.
add_module_input_arg
()
self
.
args
=
self
.
parser
.
parse_args
(
argvs
)
self
.
style_transfer
(
paths
=
[{
'content'
:
self
.
args
.
content
,
'style'
:
self
.
args
.
style
}],
output_dir
=
self
.
args
.
output_dir
,
use_gpu
=
self
.
args
.
use_gpu
,
visualization
=
self
.
args
.
visualization
)
@
serving
def
serving_method
(
self
,
images
,
**
kwargs
):
"""
Run as a service.
"""
images_decode
=
copy
.
deepcopy
(
images
)
for
image
in
images_decode
:
image
[
'content'
]
=
base64_to_cv2
(
image
[
'content'
])
image
[
'style'
]
=
base64_to_cv2
(
image
[
'style'
])
results
=
self
.
style_transfer
(
images_decode
,
**
kwargs
)
tolist
=
[
result
.
tolist
()
for
result
in
results
]
return
tolist
def
add_module_config_arg
(
self
):
"""
Add the command config options.
"""
self
.
arg_config_group
.
add_argument
(
'--use_gpu'
,
action
=
'store_true'
,
help
=
"use GPU or not"
)
self
.
arg_config_group
.
add_argument
(
'--output_dir'
,
type
=
str
,
default
=
'transfer_result'
,
help
=
'output directory for saving result.'
)
self
.
arg_config_group
.
add_argument
(
'--visualization'
,
type
=
bool
,
default
=
False
,
help
=
'save results or not.'
)
def
add_module_input_arg
(
self
):
"""
Add the command input options.
"""
self
.
arg_input_group
.
add_argument
(
'--content'
,
type
=
str
,
help
=
"path to content image."
)
self
.
arg_input_group
.
add_argument
(
'--style'
,
type
=
str
,
help
=
"path to style image."
)
modules/image/Image_gan/style_transfer/lapstyle_ocean/requirements.txt
0 → 100644
浏览文件 @
afd9111b
ppgan
modules/image/Image_gan/style_transfer/lapstyle_ocean/util.py
0 → 100644
浏览文件 @
afd9111b
import
base64
import
cv2
import
numpy
as
np
def
base64_to_cv2
(
b64str
):
data
=
base64
.
b64decode
(
b64str
.
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
data
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
return
data
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录