test_param_serialize.py 10.5 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle_hub as hub
import paddle.fluid as fluid
from paddle_hub.paddle_helper import from_param_to_flexible_data, from_flexible_data_to_param
from paddle_hub import module_desc_pb2
from paddle_hub.logger import logger


class TestParamAttrSerializeAndDeSerialize(unittest.TestCase):
    def test_convert_l1_regularizer(self):
        program = fluid.Program()
        with fluid.program_guard(program):
            input = fluid.layers.data(name="test", shape=[1], dtype="float32")
            fluid.layers.fc(
                input=input,
                size=10,
                param_attr=fluid.ParamAttr(
                    name="fc_w",
                    regularizer=fluid.regularizer.L1Decay(
                        regularization_coeff=1)))
            fc_w = [
                param for param in fluid.default_main_program().global_block().
                iter_parameters()
            ][0]
            flexible_data = module_desc_pb2.FlexibleData()
            from_param_to_flexible_data(fc_w, flexible_data)
            param_dict = from_flexible_data_to_param(flexible_data)
            assert fc_w.regularizer.__class__ == param_dict[
                'regularizer'].__class__, "regularzier type convert error!"
            assert fc_w.regularizer._regularization_coeff == param_dict[
                'regularizer']._regularization_coeff, "regularzier value convert error!"

    def test_convert_l2_regularizer(self):
        program = fluid.Program()
        with fluid.program_guard(program):
            input = fluid.layers.data(name="test", shape=[1], dtype="float32")
            fluid.layers.fc(
                input=input,
                size=10,
                param_attr=fluid.ParamAttr(
                    name="fc_w",
                    regularizer=fluid.regularizer.L2Decay(
                        regularization_coeff=1.5)))
            fc_w = [
                param for param in fluid.default_main_program().global_block().
                iter_parameters()
            ][0]
            flexible_data = module_desc_pb2.FlexibleData()
            from_param_to_flexible_data(fc_w, flexible_data)
            param_dict = from_flexible_data_to_param(flexible_data)
            assert fc_w.regularizer.__class__ == param_dict[
                'regularizer'].__class__, "regularzier type convert error!"
            assert fc_w.regularizer._regularization_coeff == param_dict[
                'regularizer']._regularization_coeff, "regularzier value convert error!"

    def test_convert_error_clip_by_value(self):
        program = fluid.Program()
        with fluid.program_guard(program):
            input = fluid.layers.data(name="test", shape=[1], dtype="float32")
            fluid.layers.fc(
                input=input,
                size=10,
                param_attr=fluid.ParamAttr(
                    name="fc_w",
                    gradient_clip=fluid.clip.ErrorClipByValue(max=1)))
            fc_w = [
                param for param in fluid.default_main_program().global_block().
                iter_parameters()
            ][0]
            flexible_data = module_desc_pb2.FlexibleData()
            from_param_to_flexible_data(fc_w, flexible_data)
            param_dict = from_flexible_data_to_param(flexible_data)
            assert fc_w.gradient_clip_attr.__class__ == param_dict[
                'gradient_clip_attr'].__class__, "clip type convert error!"
            assert fc_w.gradient_clip_attr.max == param_dict[
                'gradient_clip_attr'].max, "clip value convert error!"
            assert fc_w.gradient_clip_attr.min == param_dict[
                'gradient_clip_attr'].min, "clip value convert error!"

    def test_convert_gradient_clip_by_value(self):
        program = fluid.Program()
        with fluid.program_guard(program):
            input = fluid.layers.data(name="test", shape=[1], dtype="float32")
            fluid.layers.fc(
                input=input,
                size=10,
                param_attr=fluid.ParamAttr(
                    name="fc_w",
                    gradient_clip=fluid.clip.GradientClipByValue(max=1)))
            fc_w = [
                param for param in fluid.default_main_program().global_block().
                iter_parameters()
            ][0]
            flexible_data = module_desc_pb2.FlexibleData()
            from_param_to_flexible_data(fc_w, flexible_data)
            param_dict = from_flexible_data_to_param(flexible_data)
            assert fc_w.gradient_clip_attr.__class__ == param_dict[
                'gradient_clip_attr'].__class__, "clip type convert error!"
            assert fc_w.gradient_clip_attr.max == param_dict[
                'gradient_clip_attr'].max, "clip value convert error!"
            assert fc_w.gradient_clip_attr.min == param_dict[
                'gradient_clip_attr'].min, "clip value convert error!"

    def test_convert_gradient_clip_by_normal(self):
        program = fluid.Program()
        with fluid.program_guard(program):
            input = fluid.layers.data(name="test", shape=[1], dtype="float32")
            fluid.layers.fc(
                input=input,
                size=10,
                param_attr=fluid.ParamAttr(
                    name="fc_w",
                    gradient_clip=fluid.clip.GradientClipByNorm(clip_norm=1)))
            fc_w = [
                param for param in fluid.default_main_program().global_block().
                iter_parameters()
            ][0]
            flexible_data = module_desc_pb2.FlexibleData()
            from_param_to_flexible_data(fc_w, flexible_data)
            param_dict = from_flexible_data_to_param(flexible_data)
            assert fc_w.gradient_clip_attr.__class__ == param_dict[
                'gradient_clip_attr'].__class__, "clip type convert error!"
            assert fc_w.gradient_clip_attr.clip_norm == param_dict[
                'gradient_clip_attr'].clip_norm, "clip value convert error!"

    def test_convert_gradient_clip_by_global_normal(self):
        program = fluid.Program()
        with fluid.program_guard(program):
            input = fluid.layers.data(name="test", shape=[1], dtype="float32")
            fluid.layers.fc(
                input=input,
                size=10,
                param_attr=fluid.ParamAttr(
                    name="fc_w",
                    gradient_clip=fluid.clip.GradientClipByGlobalNorm(
                        clip_norm=1)))
            fc_w = [
                param for param in fluid.default_main_program().global_block().
                iter_parameters()
            ][0]
            flexible_data = module_desc_pb2.FlexibleData()
            from_param_to_flexible_data(fc_w, flexible_data)
            param_dict = from_flexible_data_to_param(flexible_data)
            assert fc_w.gradient_clip_attr.__class__ == param_dict[
                'gradient_clip_attr'].__class__, "clip type convert error!"
            assert fc_w.gradient_clip_attr.clip_norm == param_dict[
                'gradient_clip_attr'].clip_norm, "clip value convert error!"
            assert fc_w.gradient_clip_attr.group_name == param_dict[
                'gradient_clip_attr'].group_name, "clip value convert error!"

    def test_convert_trainable(self):
        program = fluid.Program()
        with fluid.program_guard(program):
            input = fluid.layers.data(name="test", shape=[1], dtype="float32")
            fluid.layers.fc(
                input=input,
                size=10,
                param_attr=fluid.ParamAttr(name="fc_w", trainable=False))
            fc_w = [
                param for param in fluid.default_main_program().global_block().
                iter_parameters()
            ][0]
            flexible_data = module_desc_pb2.FlexibleData()
            from_param_to_flexible_data(fc_w, flexible_data)
            param_dict = from_flexible_data_to_param(flexible_data)
            assert fc_w.trainable.__class__ == param_dict[
                'trainable'].__class__, "trainable type convert error!"
            assert fc_w.trainable == param_dict[
                'trainable'], "trainable value convert error!"

    def test_convert_do_model_average(self):
        program = fluid.Program()
        with fluid.program_guard(program):
            input = fluid.layers.data(name="test", shape=[1], dtype="float32")
            fluid.layers.fc(
                input=input,
                size=10,
                param_attr=fluid.ParamAttr(name="fc_w", do_model_average=True))
            fc_w = [
                param for param in fluid.default_main_program().global_block().
                iter_parameters()
            ][0]
            flexible_data = module_desc_pb2.FlexibleData()
            from_param_to_flexible_data(fc_w, flexible_data)
            param_dict = from_flexible_data_to_param(flexible_data)
            assert fc_w.do_model_average.__class__ == param_dict[
                'do_model_average'].__class__, "do_model_average type convert error!"
            assert fc_w.do_model_average == param_dict[
                'do_model_average'], "do_model_average value convert error!"

    def test_convert_optimize_attr(self):
        program = fluid.Program()
        with fluid.program_guard(program):
            input = fluid.layers.data(name="test", shape=[1], dtype="float32")
            fluid.layers.fc(
                input=input,
                size=10,
                param_attr=fluid.ParamAttr(name="fc_w", learning_rate=5))
            fc_w = [
                param for param in fluid.default_main_program().global_block().
                iter_parameters()
            ][0]
            flexible_data = module_desc_pb2.FlexibleData()
            from_param_to_flexible_data(fc_w, flexible_data)
            param_dict = from_flexible_data_to_param(flexible_data)
            assert fc_w.optimize_attr.__class__ == param_dict[
                'optimize_attr'].__class__, "optimize_attr type convert error!"
            assert fc_w.optimize_attr == param_dict[
                'optimize_attr'], "optimize_attr value convert error!"


if __name__ == "__main__":
    unittest.main()