提交 9176bbad 编写于 作者: W wuzewu

add unit test case

上级 01c64ed8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle_hub as hub
import paddle.fluid as fluid
from paddle_hub.paddle_helper import from_param_to_flexible_data, from_flexible_data_to_param
from paddle_hub import module_desc_pb2
from paddle_hub.logger import logger
class TestParamAttrSerializeAndDeSerialize(unittest.TestCase):
def test_convert_l1_regularizer(self):
program = fluid.Program()
with fluid.program_guard(program):
input = fluid.layers.data(name="test", shape=[1], dtype="float32")
fluid.layers.fc(
input=input,
size=10,
param_attr=fluid.ParamAttr(
name="fc_w",
regularizer=fluid.regularizer.L1Decay(
regularization_coeff=1)))
fc_w = [
param for param in fluid.default_main_program().global_block().
iter_parameters()
][0]
flexible_data = module_desc_pb2.FlexibleData()
from_param_to_flexible_data(fc_w, flexible_data)
param_dict = from_flexible_data_to_param(flexible_data)
assert fc_w.regularizer.__class__ == param_dict[
'regularizer'].__class__, "regularzier type convert error!"
assert fc_w.regularizer._regularization_coeff == param_dict[
'regularizer']._regularization_coeff, "regularzier value convert error!"
def test_convert_l2_regularizer(self):
program = fluid.Program()
with fluid.program_guard(program):
input = fluid.layers.data(name="test", shape=[1], dtype="float32")
fluid.layers.fc(
input=input,
size=10,
param_attr=fluid.ParamAttr(
name="fc_w",
regularizer=fluid.regularizer.L2Decay(
regularization_coeff=1.5)))
fc_w = [
param for param in fluid.default_main_program().global_block().
iter_parameters()
][0]
flexible_data = module_desc_pb2.FlexibleData()
from_param_to_flexible_data(fc_w, flexible_data)
param_dict = from_flexible_data_to_param(flexible_data)
assert fc_w.regularizer.__class__ == param_dict[
'regularizer'].__class__, "regularzier type convert error!"
assert fc_w.regularizer._regularization_coeff == param_dict[
'regularizer']._regularization_coeff, "regularzier value convert error!"
def test_convert_error_clip_by_value(self):
program = fluid.Program()
with fluid.program_guard(program):
input = fluid.layers.data(name="test", shape=[1], dtype="float32")
fluid.layers.fc(
input=input,
size=10,
param_attr=fluid.ParamAttr(
name="fc_w",
gradient_clip=fluid.clip.ErrorClipByValue(max=1)))
fc_w = [
param for param in fluid.default_main_program().global_block().
iter_parameters()
][0]
flexible_data = module_desc_pb2.FlexibleData()
from_param_to_flexible_data(fc_w, flexible_data)
param_dict = from_flexible_data_to_param(flexible_data)
assert fc_w.gradient_clip_attr.__class__ == param_dict[
'gradient_clip_attr'].__class__, "clip type convert error!"
assert fc_w.gradient_clip_attr.max == param_dict[
'gradient_clip_attr'].max, "clip value convert error!"
assert fc_w.gradient_clip_attr.min == param_dict[
'gradient_clip_attr'].min, "clip value convert error!"
def test_convert_gradient_clip_by_value(self):
program = fluid.Program()
with fluid.program_guard(program):
input = fluid.layers.data(name="test", shape=[1], dtype="float32")
fluid.layers.fc(
input=input,
size=10,
param_attr=fluid.ParamAttr(
name="fc_w",
gradient_clip=fluid.clip.GradientClipByValue(max=1)))
fc_w = [
param for param in fluid.default_main_program().global_block().
iter_parameters()
][0]
flexible_data = module_desc_pb2.FlexibleData()
from_param_to_flexible_data(fc_w, flexible_data)
param_dict = from_flexible_data_to_param(flexible_data)
assert fc_w.gradient_clip_attr.__class__ == param_dict[
'gradient_clip_attr'].__class__, "clip type convert error!"
assert fc_w.gradient_clip_attr.max == param_dict[
'gradient_clip_attr'].max, "clip value convert error!"
assert fc_w.gradient_clip_attr.min == param_dict[
'gradient_clip_attr'].min, "clip value convert error!"
def test_convert_gradient_clip_by_normal(self):
program = fluid.Program()
with fluid.program_guard(program):
input = fluid.layers.data(name="test", shape=[1], dtype="float32")
fluid.layers.fc(
input=input,
size=10,
param_attr=fluid.ParamAttr(
name="fc_w",
gradient_clip=fluid.clip.GradientClipByNorm(clip_norm=1)))
fc_w = [
param for param in fluid.default_main_program().global_block().
iter_parameters()
][0]
flexible_data = module_desc_pb2.FlexibleData()
from_param_to_flexible_data(fc_w, flexible_data)
param_dict = from_flexible_data_to_param(flexible_data)
assert fc_w.gradient_clip_attr.__class__ == param_dict[
'gradient_clip_attr'].__class__, "clip type convert error!"
assert fc_w.gradient_clip_attr.clip_norm == param_dict[
'gradient_clip_attr'].clip_norm, "clip value convert error!"
def test_convert_gradient_clip_by_global_normal(self):
program = fluid.Program()
with fluid.program_guard(program):
input = fluid.layers.data(name="test", shape=[1], dtype="float32")
fluid.layers.fc(
input=input,
size=10,
param_attr=fluid.ParamAttr(
name="fc_w",
gradient_clip=fluid.clip.GradientClipByGlobalNorm(
clip_norm=1)))
fc_w = [
param for param in fluid.default_main_program().global_block().
iter_parameters()
][0]
flexible_data = module_desc_pb2.FlexibleData()
from_param_to_flexible_data(fc_w, flexible_data)
param_dict = from_flexible_data_to_param(flexible_data)
assert fc_w.gradient_clip_attr.__class__ == param_dict[
'gradient_clip_attr'].__class__, "clip type convert error!"
assert fc_w.gradient_clip_attr.clip_norm == param_dict[
'gradient_clip_attr'].clip_norm, "clip value convert error!"
assert fc_w.gradient_clip_attr.group_name == param_dict[
'gradient_clip_attr'].group_name, "clip value convert error!"
def test_convert_trainable(self):
program = fluid.Program()
with fluid.program_guard(program):
input = fluid.layers.data(name="test", shape=[1], dtype="float32")
fluid.layers.fc(
input=input,
size=10,
param_attr=fluid.ParamAttr(name="fc_w", trainable=False))
fc_w = [
param for param in fluid.default_main_program().global_block().
iter_parameters()
][0]
flexible_data = module_desc_pb2.FlexibleData()
from_param_to_flexible_data(fc_w, flexible_data)
param_dict = from_flexible_data_to_param(flexible_data)
assert fc_w.trainable.__class__ == param_dict[
'trainable'].__class__, "trainable type convert error!"
assert fc_w.trainable == param_dict[
'trainable'], "trainable value convert error!"
def test_convert_do_model_average(self):
program = fluid.Program()
with fluid.program_guard(program):
input = fluid.layers.data(name="test", shape=[1], dtype="float32")
fluid.layers.fc(
input=input,
size=10,
param_attr=fluid.ParamAttr(name="fc_w", do_model_average=True))
fc_w = [
param for param in fluid.default_main_program().global_block().
iter_parameters()
][0]
flexible_data = module_desc_pb2.FlexibleData()
from_param_to_flexible_data(fc_w, flexible_data)
param_dict = from_flexible_data_to_param(flexible_data)
assert fc_w.do_model_average.__class__ == param_dict[
'do_model_average'].__class__, "do_model_average type convert error!"
assert fc_w.do_model_average == param_dict[
'do_model_average'], "do_model_average value convert error!"
def test_convert_optimize_attr(self):
program = fluid.Program()
with fluid.program_guard(program):
input = fluid.layers.data(name="test", shape=[1], dtype="float32")
fluid.layers.fc(
input=input,
size=10,
param_attr=fluid.ParamAttr(name="fc_w", learning_rate=5))
fc_w = [
param for param in fluid.default_main_program().global_block().
iter_parameters()
][0]
flexible_data = module_desc_pb2.FlexibleData()
from_param_to_flexible_data(fc_w, flexible_data)
param_dict = from_flexible_data_to_param(flexible_data)
assert fc_w.optimize_attr.__class__ == param_dict[
'optimize_attr'].__class__, "optimize_attr type convert error!"
assert fc_w.optimize_attr == param_dict[
'optimize_attr'], "optimize_attr value convert error!"
if __name__ == "__main__":
unittest.main()
......@@ -218,7 +218,7 @@ class TestSerializeAndDeSerialize(unittest.TestCase):
output = from_flexible_data_to_pyobj(flexible_data)
assert input == output, "dict convesion error"
def test_compound_object(self):
def test_convert_compound_object(self):
input = {
False: 1,
'2': 3,
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle_hub as hub
import paddle.fluid as fluid
from paddle_hub import create_signature
class TestSignature(unittest.TestCase):
def test_check_signature_info(self):
program = fluid.Program()
with fluid.program_guard(program):
var_1 = fluid.layers.data(name="var_1", dtype="int64", shape=[1])
var_2 = fluid.layers.data(
name="var_2", dtype="float32", shape=[3, 100, 100])
name = "test"
inputs = [var_1]
outputs = [var_2]
feed_names = ["label"]
fetch_names = ["img"]
sign = create_signature(
name=name,
inputs=inputs,
outputs=outputs,
feed_names=feed_names,
fetch_names=fetch_names)
assert sign.get_name() == name, "sign name error"
assert sign.get_inputs() == inputs, "sign inputs error"
assert sign.get_outputs() == outputs, "sign outputs error"
assert sign.get_feed_names() == feed_names, "sign feed_names error"
assert sign.get_fetch_names(
) == fetch_names, "sign fetch_names error"
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册