mask_detector.cc 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

# include "mask_detector.h"

// Normalize the image by (pix - mean) * scale
void NormalizeImage(
    const std::vector<float> &mean,
    const std::vector<float> &scale,
    cv::Mat& im, // NOLINT
    float* input_buffer) {
  int height = im.rows;
  int width = im.cols;
  int stride = width * height;
  for (int h = 0; h < height; h++) {
    for (int w = 0; w < width; w++) {
      int base = h * width + w;
      input_buffer[base + 0 * stride] =
          (im.at<cv::Vec3f>(h, w)[0] - mean[0]) * scale[0];
      input_buffer[base + 1 * stride] =
          (im.at<cv::Vec3f>(h, w)[1] - mean[1]) * scale[1];
      input_buffer[base + 2 * stride] =
          (im.at<cv::Vec3f>(h, w)[2] - mean[2]) * scale[2];
    }
  }
}

// Load Model and return model predictor
void LoadModel(
    const std::string& model_dir,
    bool use_gpu,
    std::unique_ptr<paddle::PaddlePredictor>* predictor) {
  // Config the model info
  paddle::AnalysisConfig config;
  config.SetModel(model_dir + "/__model__",
                  model_dir + "/__params__");
  if (use_gpu) {
      config.EnableUseGpu(100, 0);
  } else {
      config.DisableGpu();
  }
  config.SwitchUseFeedFetchOps(false);
  config.SwitchSpecifyInputNames(true);
  // Memory optimization
  config.EnableMemoryOptim();
  *predictor = std::move(CreatePaddlePredictor(config));
}


// Visualiztion MaskDetector results
void VisualizeResult(const cv::Mat& img,
                     const std::vector<FaceResult>& results,
                     cv::Mat* vis_img) {
  for (int i = 0; i < results.size(); ++i) {
    int w = results[i].rect[1] - results[i].rect[0];
    int h = results[i].rect[3] - results[i].rect[2];
    cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[2], w, h);

    // Configure color and text size
    cv::Scalar roi_color;
    std::string text;
    if (results[i].class_id == 1) {
      text = "MASK:  ";
      roi_color = cv::Scalar(0, 255, 0);
    } else {
      text = "NO MASK:  ";
      roi_color = cv::Scalar(0, 0, 255);
    }
    text += std::to_string(static_cast<int>(results[i].score*100)) + "%";
    int font_face = cv::FONT_HERSHEY_TRIPLEX;
    double font_scale = 1.f;
    float thickness = 1;
    cv::Size text_size = cv::getTextSize(text,
                                         font_face,
                                         font_scale,
                                         thickness,
                                         nullptr);
    float new_font_scale = roi.width * font_scale / text_size.width;
    text_size = cv::getTextSize(text,
                               font_face,
                               new_font_scale,
                               thickness,
                               nullptr);
    cv::Point origin;
    origin.x = roi.x;
    origin.y = roi.y;

    // Configure text background
    cv::Rect text_back = cv::Rect(results[i].rect[0],
    results[i].rect[2] - text_size.height,
    text_size.width,
    text_size.height);

    // Draw roi object, text, and background
    *vis_img = img;
    cv::rectangle(*vis_img, roi, roi_color, 2);
    cv::rectangle(*vis_img, text_back, cv::Scalar(225, 225, 225), -1);
    cv::putText(*vis_img,
                text,
                origin,
                font_face,
                new_font_scale,
                cv::Scalar(0, 0, 0),
                thickness);
  }
}



void FaceDetector::Preprocess(const cv::Mat& image_mat, float shrink) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = image_mat.clone();
  cv::resize(im, im, cv::Size(), shrink, shrink, cv::INTER_CUBIC);
  im.convertTo(im, CV_32FC3, 1.0);
  int rc = im.channels();
  int rh = im.rows;
  int rw = im.cols;
  input_shape_ = {1, rc, rh, rw};
  input_data_.resize(1 * rc * rh * rw);
  float* buffer = input_data_.data();
  NormalizeImage(mean_, scale_, im, input_data_.data());
}

void FaceDetector::Postprocess(
    const cv::Mat& raw_mat,
    float shrink,
    std::vector<FaceResult>* result) {
  result->clear();
  int rect_num = 0;
  int rh = input_shape_[2];
  int rw = input_shape_[3];
  int total_size = output_data_.size() / 6;
  for (int j = 0; j < total_size; ++j) {
    // Class id
    int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
    // Confidence score
    float score = output_data_[1 + j * 6];
    int xmin = (output_data_[2 + j * 6] * rw) / shrink;
    int ymin = (output_data_[3 + j * 6] * rh) / shrink;
    int xmax = (output_data_[4 + j * 6] * rw) / shrink;
    int ymax = (output_data_[5 + j * 6] * rh) / shrink;
    int wd = xmax - xmin;
    int hd = ymax - ymin;
    if (score > threshold_) {
      auto roi = cv::Rect(xmin, ymin, wd, hd) &
                  cv::Rect(0, 0, rw / shrink, rh / shrink);
      // A view ref to original mat
      cv::Mat roi_ref(raw_mat, roi);
      FaceResult result_item;
      result_item.rect = {xmin, xmax, ymin, ymax};
      result_item.roi_rect = roi_ref;
      result->push_back(result_item);
    }
  }
}

void FaceDetector::Predict(const cv::Mat& im,
                                  std::vector<FaceResult>* result,
                                  float shrink) {
  // Preprocess image
  Preprocess(im, shrink);
  // Prepare input tensor
  auto input_names = predictor_->GetInputNames();
  auto in_tensor = predictor_->GetInputTensor(input_names[0]);
  in_tensor->Reshape(input_shape_);
  in_tensor->copy_from_cpu(input_data_.data());
  // Run predictor
  predictor_->ZeroCopyRun();
  // Get output tensor
  auto output_names = predictor_->GetOutputNames();
  auto out_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = out_tensor->shape();
  // Calculate output length
  int output_size = 1;
  for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
  }
  output_data_.resize(output_size);
  out_tensor->copy_to_cpu(output_data_.data());
  // Postprocessing result
  Postprocess(im, shrink, result);
}

inline void MaskClassifier::Preprocess(std::vector<FaceResult>* faces) {
  int batch_size = faces->size();
  input_shape_ = {
      batch_size,
      EVAL_CROP_SIZE_[0],
      EVAL_CROP_SIZE_[1],
      EVAL_CROP_SIZE_[2]
  };
  // Reallocate input buffer
  int input_size = 1;
  for (int x : input_shape_) {
    input_size *= x;
  }
  input_data_.resize(input_size);
  auto buffer_base = input_data_.data();
  for (int i = 0; i < batch_size; ++i) {
    cv::Mat im = (*faces)[i].roi_rect;
    // Resize
    int rc = im.channels();
    int rw = im.cols;
    int rh = im.rows;
    cv::Size resize_size(input_shape_[3], input_shape_[2]);
    if (rw != input_shape_[3] || rh != input_shape_[2]) {
      cv::resize(im, im, resize_size, 0.f, 0.f, cv::INTER_CUBIC);
    }
    im.convertTo(im, CV_32FC3, 1.0 / 256.0);
    rc = im.channels();
    rw = im.cols;
    rh = im.rows;
    float* buffer_i = buffer_base + i * rc * rw * rh;
    NormalizeImage(mean_, scale_, im, buffer_i);
  }
}

void MaskClassifier::Postprocess(std::vector<FaceResult>* faces) {
  float* data = output_data_.data();
  int batch_size = faces->size();
  int out_num = output_data_.size();
  for (int i = 0; i < batch_size; ++i) {
    auto out_addr = data + (out_num / batch_size) * i;
    int best_class_id = 0;
    float best_class_score = *(best_class_id + out_addr);
    for (int j = 0; j < (out_num / batch_size); ++j) {
      auto infer_class = j;
      auto score = *(j + out_addr);
      if (score > best_class_score) {
        best_class_id = infer_class;
        best_class_score = score;
      }
    }
    (*faces)[i].class_id = best_class_id;
    (*faces)[i].score = best_class_score;
  }
}

void MaskClassifier::Predict(std::vector<FaceResult>* faces) {
  Preprocess(faces);
  // Prepare input tensor
  auto input_names = predictor_->GetInputNames();
  auto in_tensor = predictor_->GetInputTensor(input_names[0]);
  in_tensor->Reshape(input_shape_);
  in_tensor->copy_from_cpu(input_data_.data());
  // Run predictor
  predictor_->ZeroCopyRun();
  // Get output tensor
  auto output_names = predictor_->GetOutputNames();
  auto out_tensor = predictor_->GetOutputTensor(output_names[1]);
  std::vector<int> output_shape = out_tensor->shape();
  // Calculate output length
  int output_size = 1;
  for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
  }
  output_data_.resize(output_size);
  out_tensor->copy_to_cpu(output_data_.data());
  Postprocess(faces);
}