finetune.py 11.9 KB
Newer Older
W
wuzewu 已提交
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
Z
Zeyu Chen 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wuzewu 已提交
15 16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
Zeyu Chen 已提交
19 20
import os
import time
Z
Zeyu Chen 已提交
21
import multiprocessing
Z
Zeyu Chen 已提交
22

W
wuzewu 已提交
23 24
import paddle
import paddle.fluid as fluid
25
import numpy as np
Z
Zeyu Chen 已提交
26

W
wuzewu 已提交
27 28 29
from paddlehub.common.logger import logger
from paddlehub.finetune.strategy import BERTFinetuneStrategy, DefaultStrategy
from paddlehub.finetune.checkpoint import load_checkpoint, save_checkpoint
Z
Zeyu Chen 已提交
30
from paddlehub.finetune.evaluate import evaluate_cls_task, evaluate_seq_labeling_task
W
wuzewu 已提交
31 32
from visualdl import LogWriter
import paddlehub as hub
W
wuzewu 已提交
33

Z
Zeyu Chen 已提交
34

35 36 37 38 39 40 41 42 43 44 45
def _get_running_device_info(config):
    if config.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    return place, dev_count


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
def _do_memory_optimization(task, config):
    if config.enable_memory_optim:
        logger.info("Memory optimization start...")
        task_var_name = task.metric_variable_names()
        logger.info(
            "Skip memory optimization on variables: {}".format(task_var_name))
        optimize_time_begin = time.time()
        fluid.memory_optimize(
            input_program=fluid.default_main_program(),
            # skip memory optimization on task metric variables
            skip_opt_set=task_var_name)
        time_used = time.time() - optimize_time_begin
        logger.info("Memory optimization done! Time elapsed %f sec" % time_used)

    lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
        program=fluid.default_main_program(), batch_size=config.batch_size)
62
    logger.info("Theoretical memory usage in training: %.2f - %.2f %s" %
63 64 65
                (lower_mem, upper_mem, unit)),


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
def _finetune_seq_label_task(task,
                             data_reader,
                             feed_list,
                             config=None,
                             do_eval=False):
    """
    Finetune sequence labeling task, evaluate metric is F1, precision and recall

    """
    main_program = task.main_program()
    startup_program = task.startup_program()
    loss = task.variable("loss")
    seq_len = task.variable("seq_len")

    num_epoch = config.num_epoch
    batch_size = config.batch_size

    place, dev_count = _get_running_device_info(config)
    with fluid.program_guard(main_program, startup_program):
        exe = fluid.Executor(place=place)
        data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place)

        # Select strategy
        if isinstance(config.strategy, hub.BERTFinetuneStrategy):
            scheduled_lr = config.strategy.execute(loss, main_program,
                                                   data_reader, config)
        elif isinstance(config.strategy, hub.DefaultStrategy):
            config.strategy.execute(loss)
        #TODO: add more finetune strategy

        _do_memory_optimization(task, config)

        # Try to restore model training checkpoint
        current_epoch, global_step = load_checkpoint(config.checkpoint_dir, exe)

        train_time_used = 0
        logger.info("PaddleHub finetune start")

        # Finetune loop
        for epoch in range(current_epoch, num_epoch + 1):
            train_reader = data_reader.data_generator(
                batch_size=batch_size, phase='train')
            num_trained_examples = loss_sum = 0
            for batch in train_reader():
                num_batch_examples = len(batch)
                train_time_begin = time.time()
                loss_v = exe.run(
                    feed=data_feeder.feed(batch), fetch_list=[loss.name])
                train_time_used += time.time() - train_time_begin
                global_step += 1
                num_trained_examples += num_batch_examples
                loss_sum += loss_v[0] * num_batch_examples

                # log fintune status
                if global_step % config.log_interval == 0:
                    avg_loss = loss_sum / num_trained_examples
                    speed = config.log_interval / train_time_used
                    logger.info("step %d: loss=%.5f [step/sec: %.2f]" %
                                (global_step, avg_loss, speed))

                    train_time_used = 0
                    num_trained_examples = loss_sum = 0

                if config.save_ckpt_interval and global_step % config.save_ckpt_interval == 0:
                    # NOTE: current saved checkpoint machanism is not completed,
                    # it can't restore correct dataset training status
                    save_checkpoint(
                        checkpoint_dir=config.checkpoint_dir,
                        current_epoch=epoch,
                        global_step=global_step,
                        exe=exe)

                if do_eval and global_step % config.eval_interval == 0:
139
                    evaluate_seq_label_task(
140 141 142
                        task,
                        data_reader,
                        feed_list,
143
                        phase="test",
144
                        config=config)
145
                    evaluate_seq_label_task(
146 147 148
                        task,
                        data_reader,
                        feed_list,
149
                        phase="dev",
150 151 152 153 154 155 156 157 158 159 160
                        config=config)

        # NOTE: current saved checkpoint machanism is not completed, it can't
        # resotre dataset training status
        save_checkpoint(
            checkpoint_dir=config.checkpoint_dir,
            current_epoch=num_epoch + 1,
            global_step=global_step,
            exe=exe)

        if do_eval:
161 162 163
            evaluate_seq_label_task(
                task, data_reader, feed_list, phase="dev", config=config)
            evaluate_seq_label_task(
164 165 166 167 168 169
                task, data_reader, feed_list, phase="test", config=config)
        logger.info("PaddleHub finetune finished.")


def _finetune_cls_task(task, data_reader, feed_list, config=None,
                       do_eval=False):
W
wuzewu 已提交
170
    main_program = task.main_program()
Z
Zeyu Chen 已提交
171
    startup_program = task.startup_program()
Z
Zeyu Chen 已提交
172 173
    loss = task.variable("loss")
    accuracy = task.variable("accuracy")
W
wuzewu 已提交
174

175
    num_epoch = config.num_epoch
W
wuzewu 已提交
176
    batch_size = config.batch_size
W
wuzewu 已提交
177
    log_writter = LogWriter(
178
        os.path.join(config.checkpoint_dir, "vdllog"), sync_cycle=10)
W
wuzewu 已提交
179

180
    place, dev_count = _get_running_device_info(config)
W
wuzewu 已提交
181 182
    with fluid.program_guard(main_program, startup_program):
        exe = fluid.Executor(place=place)
Z
Zeyu Chen 已提交
183 184
        data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place)

Z
Zeyu Chen 已提交
185 186 187 188
        # select strategy
        if isinstance(config.strategy, hub.BERTFinetuneStrategy):
            scheduled_lr = config.strategy.execute(loss, main_program,
                                                   data_reader, config)
W
wuzewu 已提交
189
        elif isinstance(config.strategy, hub.DefaultStrategy):
Z
Zeyu Chen 已提交
190
            config.strategy.execute(loss)
Z
Zeyu Chen 已提交
191
        #TODO: add more finetune strategy
W
wuzewu 已提交
192

193 194 195 196
        _do_memory_optimization(task, config)

        # Try to restore model training checkpoint
        current_epoch, global_step = load_checkpoint(config.checkpoint_dir, exe)
197 198 199 200

        best_eval_acc = 0.0
        train_time_used = 0
        logger.info("PaddleHub finetune start")
W
wuzewu 已提交
201 202 203 204 205 206 207 208 209

        # add visualdl scalar
        with log_writter.mode("train") as logw:
            train_loss_scalar = logw.scalar(tag="loss[train]")
            train_acc_scalar = logw.scalar(tag="accuracy[train]")
        with log_writter.mode("evaluate") as logw:
            eval_loss_scalar = logw.scalar(tag="loss[evaluate]")
            eval_acc_scalar = logw.scalar(tag="accuracy[evaluate]")

210
        # Finetune loop
211
        for epoch in range(current_epoch, num_epoch + 1):
212
            train_reader = data_reader.data_generator(
Z
Zeyu Chen 已提交
213
                batch_size=batch_size, phase='train')
214
            num_trained_examples = acc_sum = loss_sum = 0
W
wuzewu 已提交
215
            for batch in train_reader():
216 217
                num_batch_examples = len(batch)
                train_time_begin = time.time()
W
wuzewu 已提交
218
                loss_v, accuracy_v = exe.run(
W
wuzewu 已提交
219
                    feed=data_feeder.feed(batch),
W
wuzewu 已提交
220
                    fetch_list=[loss.name, accuracy.name])
221 222 223 224 225 226 227 228 229 230
                train_time_used += time.time() - train_time_begin
                global_step += 1
                num_trained_examples += num_batch_examples
                acc_sum += accuracy_v * num_batch_examples
                loss_sum += loss_v * num_batch_examples

                # log fintune status
                if global_step % config.log_interval == 0:
                    avg_loss = loss_sum / num_trained_examples
                    avg_acc = acc_sum / num_trained_examples
Z
Zeyu Chen 已提交
231
                    speed = config.log_interval / train_time_used
232 233
                    logger.info("step %d: loss=%.5f acc=%.5f [step/sec: %.2f]" %
                                (global_step, avg_loss, avg_acc, speed))
W
wuzewu 已提交
234 235

                    # record visualdl log
236 237 238 239 240 241
                    train_loss_scalar.add_record(global_step, avg_loss)
                    train_acc_scalar.add_record(global_step, avg_acc)

                    train_time_used = 0
                    num_trained_examples = acc_sum = loss_sum = 0

W
wuzewu 已提交
242
                if config.save_ckpt_interval and global_step % config.save_ckpt_interval == 0:
243 244
                    # NOTE: current saved checkpoint machanism is not completed,
                    # it can't restore dataset training status
W
wuzewu 已提交
245
                    save_checkpoint(
246 247 248 249
                        checkpoint_dir=config.checkpoint_dir,
                        current_epoch=epoch,
                        global_step=global_step,
                        exe=exe)
W
wuzewu 已提交
250

251
                if do_eval and global_step % config.eval_interval == 0:
252
                    eval_loss, eval_acc, eval_perf = evaluate_cls_task(
W
wuzewu 已提交
253
                        task,
254
                        data_reader,
W
wuzewu 已提交
255
                        feed_list,
256
                        phase="val",
W
wuzewu 已提交
257
                        config=config)
258 259
                    eval_loss_scalar.add_record(global_step, eval_loss)
                    eval_acc_scalar.add_record(global_step, eval_acc)
W
wuzewu 已提交
260 261
                    if eval_acc > best_eval_acc:
                        best_eval_acc = eval_acc
262
                        model_saved_dir = os.path.join(config.checkpoint_dir,
263 264 265 266 267
                                                       "best_model")
                        logger.info(
                            "best model saved to %s [best accuracy=%.5f]" %
                            (model_saved_dir, best_eval_acc))
                        fluid.io.save_persistables(exe, dirname=model_saved_dir)
W
wuzewu 已提交
268

269 270
        # NOTE: current saved checkpoint machanism is not completed, it can't
        # resotre dataset training status
W
wuzewu 已提交
271
        save_checkpoint(
272 273 274 275
            checkpoint_dir=config.checkpoint_dir,
            current_epoch=num_epoch + 1,
            global_step=global_step,
            exe=exe)
276 277

        if do_eval:
278 279
            evaluate_cls_task(
                task, data_reader, feed_list, phase="test", config=config)
280
        logger.info("PaddleHub finetune finished.")
W
wuzewu 已提交
281 282


283
def finetune_and_eval(task, data_reader, feed_list, config=None):
284 285 286
    if task.task_type == "sequence_labeling":
        _finetune_seq_label_task(
            task, data_reader, feed_list, config, do_eval=True)
287
    # if it's image_classification and text classificaiton
288 289
    else:
        _finetune_cls_task(task, data_reader, feed_list, config, do_eval=True)
W
wuzewu 已提交
290 291


292
def finetune(task, data_reader, feed_list, config=None):
293
    _finetune_cls_task(task, data_reader, feed_list, config, do_eval=False)