finetune.py 11.9 KB
Newer Older
W
wuzewu 已提交
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
Z
Zeyu Chen 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wuzewu 已提交
15 16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
Zeyu Chen 已提交
19 20
import os
import time
Z
Zeyu Chen 已提交
21
import multiprocessing
Z
Zeyu Chen 已提交
22

W
wuzewu 已提交
23 24
import paddle
import paddle.fluid as fluid
25
import numpy as np
Z
Zeyu Chen 已提交
26

W
wuzewu 已提交
27 28 29
from paddlehub.common.logger import logger
from paddlehub.finetune.strategy import BERTFinetuneStrategy, DefaultStrategy
from paddlehub.finetune.checkpoint import load_checkpoint, save_checkpoint
30 31
from paddlehub.finetune.evaluate import evaluate_cls_task,
evaluate_seq_labeling_task
W
wuzewu 已提交
32 33
from visualdl import LogWriter
import paddlehub as hub
W
wuzewu 已提交
34

Z
Zeyu Chen 已提交
35

36 37 38 39 40 41 42 43 44 45 46
def _get_running_device_info(config):
    if config.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    return place, dev_count


47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
def _do_memory_optimization(task, config):
    if config.enable_memory_optim:
        logger.info("Memory optimization start...")
        task_var_name = task.metric_variable_names()
        logger.info(
            "Skip memory optimization on variables: {}".format(task_var_name))
        optimize_time_begin = time.time()
        fluid.memory_optimize(
            input_program=fluid.default_main_program(),
            # skip memory optimization on task metric variables
            skip_opt_set=task_var_name)
        time_used = time.time() - optimize_time_begin
        logger.info("Memory optimization done! Time elapsed %f sec" % time_used)

    lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
        program=fluid.default_main_program(), batch_size=config.batch_size)
63
    logger.info("Theoretical memory usage in training: %.2f - %.2f %s" %
64 65 66
                (lower_mem, upper_mem, unit)),


67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
def _finetune_seq_label_task(task,
                             data_reader,
                             feed_list,
                             config=None,
                             do_eval=False):
    """
    Finetune sequence labeling task, evaluate metric is F1, precision and recall

    """
    main_program = task.main_program()
    startup_program = task.startup_program()
    loss = task.variable("loss")
    seq_len = task.variable("seq_len")

    num_epoch = config.num_epoch
    batch_size = config.batch_size

    place, dev_count = _get_running_device_info(config)
    with fluid.program_guard(main_program, startup_program):
        exe = fluid.Executor(place=place)
        data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place)

        # Select strategy
        if isinstance(config.strategy, hub.BERTFinetuneStrategy):
            scheduled_lr = config.strategy.execute(loss, main_program,
                                                   data_reader, config)
        elif isinstance(config.strategy, hub.DefaultStrategy):
            config.strategy.execute(loss)
        #TODO: add more finetune strategy

        _do_memory_optimization(task, config)

        # Try to restore model training checkpoint
        current_epoch, global_step = load_checkpoint(config.checkpoint_dir, exe)

        train_time_used = 0
        logger.info("PaddleHub finetune start")

        # Finetune loop
        for epoch in range(current_epoch, num_epoch + 1):
            train_reader = data_reader.data_generator(
                batch_size=batch_size, phase='train')
            num_trained_examples = loss_sum = 0
            for batch in train_reader():
                num_batch_examples = len(batch)
                train_time_begin = time.time()
                loss_v = exe.run(
                    feed=data_feeder.feed(batch), fetch_list=[loss.name])
                train_time_used += time.time() - train_time_begin
                global_step += 1
                num_trained_examples += num_batch_examples
                loss_sum += loss_v[0] * num_batch_examples

                # log fintune status
                if global_step % config.log_interval == 0:
                    avg_loss = loss_sum / num_trained_examples
                    speed = config.log_interval / train_time_used
                    logger.info("step %d: loss=%.5f [step/sec: %.2f]" %
                                (global_step, avg_loss, speed))

                    train_time_used = 0
                    num_trained_examples = loss_sum = 0

                if config.save_ckpt_interval and global_step % config.save_ckpt_interval == 0:
                    # NOTE: current saved checkpoint machanism is not completed,
                    # it can't restore correct dataset training status
                    save_checkpoint(
                        checkpoint_dir=config.checkpoint_dir,
                        current_epoch=epoch,
                        global_step=global_step,
                        exe=exe)

                if do_eval and global_step % config.eval_interval == 0:
140
                    evaluate_seq_label_task(
141 142 143
                        task,
                        data_reader,
                        feed_list,
144
                        phase="test",
145
                        config=config)
146
                    evaluate_seq_label_task(
147 148 149
                        task,
                        data_reader,
                        feed_list,
150
                        phase="dev",
151 152 153 154 155 156 157 158 159 160 161
                        config=config)

        # NOTE: current saved checkpoint machanism is not completed, it can't
        # resotre dataset training status
        save_checkpoint(
            checkpoint_dir=config.checkpoint_dir,
            current_epoch=num_epoch + 1,
            global_step=global_step,
            exe=exe)

        if do_eval:
162 163 164
            evaluate_seq_label_task(
                task, data_reader, feed_list, phase="dev", config=config)
            evaluate_seq_label_task(
165 166 167 168 169 170
                task, data_reader, feed_list, phase="test", config=config)
        logger.info("PaddleHub finetune finished.")


def _finetune_cls_task(task, data_reader, feed_list, config=None,
                       do_eval=False):
W
wuzewu 已提交
171
    main_program = task.main_program()
Z
Zeyu Chen 已提交
172
    startup_program = task.startup_program()
Z
Zeyu Chen 已提交
173 174
    loss = task.variable("loss")
    accuracy = task.variable("accuracy")
W
wuzewu 已提交
175

176
    num_epoch = config.num_epoch
W
wuzewu 已提交
177
    batch_size = config.batch_size
W
wuzewu 已提交
178
    log_writter = LogWriter(
179
        os.path.join(config.checkpoint_dir, "vdllog"), sync_cycle=10)
W
wuzewu 已提交
180

181
    place, dev_count = _get_running_device_info(config)
W
wuzewu 已提交
182 183
    with fluid.program_guard(main_program, startup_program):
        exe = fluid.Executor(place=place)
Z
Zeyu Chen 已提交
184 185
        data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place)

Z
Zeyu Chen 已提交
186 187 188 189
        # select strategy
        if isinstance(config.strategy, hub.BERTFinetuneStrategy):
            scheduled_lr = config.strategy.execute(loss, main_program,
                                                   data_reader, config)
W
wuzewu 已提交
190
        elif isinstance(config.strategy, hub.DefaultStrategy):
Z
Zeyu Chen 已提交
191
            config.strategy.execute(loss)
Z
Zeyu Chen 已提交
192
        #TODO: add more finetune strategy
W
wuzewu 已提交
193

194 195 196 197
        _do_memory_optimization(task, config)

        # Try to restore model training checkpoint
        current_epoch, global_step = load_checkpoint(config.checkpoint_dir, exe)
198 199 200 201

        best_eval_acc = 0.0
        train_time_used = 0
        logger.info("PaddleHub finetune start")
W
wuzewu 已提交
202 203 204 205 206 207 208 209 210

        # add visualdl scalar
        with log_writter.mode("train") as logw:
            train_loss_scalar = logw.scalar(tag="loss[train]")
            train_acc_scalar = logw.scalar(tag="accuracy[train]")
        with log_writter.mode("evaluate") as logw:
            eval_loss_scalar = logw.scalar(tag="loss[evaluate]")
            eval_acc_scalar = logw.scalar(tag="accuracy[evaluate]")

211
        # Finetune loop
212
        for epoch in range(current_epoch, num_epoch + 1):
213
            train_reader = data_reader.data_generator(
Z
Zeyu Chen 已提交
214
                batch_size=batch_size, phase='train')
215
            num_trained_examples = acc_sum = loss_sum = 0
W
wuzewu 已提交
216
            for batch in train_reader():
217 218
                num_batch_examples = len(batch)
                train_time_begin = time.time()
W
wuzewu 已提交
219
                loss_v, accuracy_v = exe.run(
W
wuzewu 已提交
220
                    feed=data_feeder.feed(batch),
W
wuzewu 已提交
221
                    fetch_list=[loss.name, accuracy.name])
222 223 224 225 226 227 228 229 230 231
                train_time_used += time.time() - train_time_begin
                global_step += 1
                num_trained_examples += num_batch_examples
                acc_sum += accuracy_v * num_batch_examples
                loss_sum += loss_v * num_batch_examples

                # log fintune status
                if global_step % config.log_interval == 0:
                    avg_loss = loss_sum / num_trained_examples
                    avg_acc = acc_sum / num_trained_examples
Z
Zeyu Chen 已提交
232
                    speed = config.log_interval / train_time_used
233 234
                    logger.info("step %d: loss=%.5f acc=%.5f [step/sec: %.2f]" %
                                (global_step, avg_loss, avg_acc, speed))
W
wuzewu 已提交
235 236

                    # record visualdl log
237 238 239 240 241 242
                    train_loss_scalar.add_record(global_step, avg_loss)
                    train_acc_scalar.add_record(global_step, avg_acc)

                    train_time_used = 0
                    num_trained_examples = acc_sum = loss_sum = 0

W
wuzewu 已提交
243
                if config.save_ckpt_interval and global_step % config.save_ckpt_interval == 0:
244 245
                    # NOTE: current saved checkpoint machanism is not completed,
                    # it can't restore dataset training status
W
wuzewu 已提交
246
                    save_checkpoint(
247 248 249 250
                        checkpoint_dir=config.checkpoint_dir,
                        current_epoch=epoch,
                        global_step=global_step,
                        exe=exe)
W
wuzewu 已提交
251

252
                if do_eval and global_step % config.eval_interval == 0:
253
                    eval_loss, eval_acc, eval_perf = evaluate_cls_task(
W
wuzewu 已提交
254
                        task,
255
                        data_reader,
W
wuzewu 已提交
256
                        feed_list,
257
                        phase="val",
W
wuzewu 已提交
258
                        config=config)
259 260
                    eval_loss_scalar.add_record(global_step, eval_loss)
                    eval_acc_scalar.add_record(global_step, eval_acc)
W
wuzewu 已提交
261 262
                    if eval_acc > best_eval_acc:
                        best_eval_acc = eval_acc
263
                        model_saved_dir = os.path.join(config.checkpoint_dir,
264 265 266 267 268
                                                       "best_model")
                        logger.info(
                            "best model saved to %s [best accuracy=%.5f]" %
                            (model_saved_dir, best_eval_acc))
                        fluid.io.save_persistables(exe, dirname=model_saved_dir)
W
wuzewu 已提交
269

270 271
        # NOTE: current saved checkpoint machanism is not completed, it can't
        # resotre dataset training status
W
wuzewu 已提交
272
        save_checkpoint(
273 274 275 276
            checkpoint_dir=config.checkpoint_dir,
            current_epoch=num_epoch + 1,
            global_step=global_step,
            exe=exe)
277 278

        if do_eval:
279 280
            evaluate_cls_task(
                task, data_reader, feed_list, phase="test", config=config)
281
        logger.info("PaddleHub finetune finished.")
W
wuzewu 已提交
282 283


284
def finetune_and_eval(task, data_reader, feed_list, config=None):
285 286 287
    if task.task_type == "sequence_labeling":
        _finetune_seq_label_task(
            task, data_reader, feed_list, config, do_eval=True)
288
    # if it's image_classification and text classificaiton
289 290
    else:
        _finetune_cls_task(task, data_reader, feed_list, config, do_eval=True)
W
wuzewu 已提交
291 292


293
def finetune(task, data_reader, feed_list, config=None):
294
    _finetune_cls_task(task, data_reader, feed_list, config, do_eval=False)