utils.py 10.2 KB
Newer Older
H
haoyuying 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
W
wuzewu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

H
haoyuying 已提交
15
import os
H
haoyuying 已提交
16
from typing import Callable, Union, List, Tuple
H
haoyuying 已提交
17

H
haoyuying 已提交
18
import cv2
H
haoyuying 已提交
19
import paddle
20
import PIL
W
wuzewu 已提交
21
import numpy as np
22
import matplotlib as plt
H
haoyuying 已提交
23
import paddle.nn.functional as F
H
haoyuying 已提交
24 25 26 27 28 29 30 31


def is_image_file(filename: str) -> bool:
    '''Determine whether the input file name is a valid image file name.'''
    ext = os.path.splitext(filename)[-1].lower()
    return ext in ['.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff']


H
haoyuying 已提交
32
def get_img_file(dir_name: str) -> List[str]:
H
haoyuying 已提交
33 34
    '''Get all image file paths in several directories which have the same parent directory.'''
    images = []
35
    for parent, _, filenames in os.walk(dir_name):
H
haoyuying 已提交
36 37 38 39 40
        for filename in filenames:
            if not is_image_file(filename):
                continue
            img_path = os.path.join(parent, filename)
            images.append(img_path)
41

H
haoyuying 已提交
42 43 44
    return images


H
haoyuying 已提交
45
def box_crop(boxes: np.ndarray, labels: np.ndarray, scores: np.ndarray, crop: List[int], img_shape: List[int]) -> Tuple:
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    """Crop the boxes ,labels, scores according to the given shape"""

    x, y, w, h = map(float, crop)
    im_w, im_h = map(float, img_shape)

    boxes = boxes.copy()
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] - boxes[:, 2] / 2) * im_w, (boxes[:, 0] + boxes[:, 2] / 2) * im_w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] - boxes[:, 3] / 2) * im_h, (boxes[:, 1] + boxes[:, 3] / 2) * im_h

    crop_box = np.array([x, y, x + w, y + h])
    centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0
    mask = np.logical_and(crop_box[:2] <= centers, centers <= crop_box[2:]).all(axis=1)

    boxes[:, :2] = np.maximum(boxes[:, :2], crop_box[:2])
    boxes[:, 2:] = np.minimum(boxes[:, 2:], crop_box[2:])
    boxes[:, :2] -= crop_box[:2]
    boxes[:, 2:] -= crop_box[:2]

    mask = np.logical_and(mask, (boxes[:, :2] < boxes[:, 2:]).all(axis=1))
    boxes = boxes * np.expand_dims(mask.astype('float32'), axis=1)
    labels = labels * mask.astype('float32')
    scores = scores * mask.astype('float32')
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] + boxes[:, 2]) / 2 / w, (boxes[:, 2] - boxes[:, 0]) / w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] + boxes[:, 3]) / 2 / h, (boxes[:, 3] - boxes[:, 1]) / h

    return boxes, labels, scores, mask.sum()


def box_iou_xywh(box1: np.ndarray, box2: np.ndarray) -> float:
    """Calculate iou by xywh"""

    assert box1.shape[-1] == 4, "Box1 shape[-1] should be 4."
    assert box2.shape[-1] == 4, "Box2 shape[-1] should be 4."

    b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
    b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
    b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
    b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2

    inter_x1 = np.maximum(b1_x1, b2_x1)
    inter_x2 = np.minimum(b1_x2, b2_x2)
    inter_y1 = np.maximum(b1_y1, b2_y1)
    inter_y2 = np.minimum(b1_y2, b2_y2)
    inter_w = inter_x2 - inter_x1
    inter_h = inter_y2 - inter_y1
    inter_w[inter_w < 0] = 0
    inter_h[inter_h < 0] = 0

    inter_area = inter_w * inter_h
    b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
    b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)

    return inter_area / (b1_area + b2_area - inter_area)


def draw_boxes_on_image(image_path: str,
                        boxes: np.ndarray,
                        scores: np.ndarray,
                        labels: np.ndarray,
H
haoyuying 已提交
105
                        label_names: List[str],
H
haoyuying 已提交
106 107
                        score_thresh: float = 0.5,
                        save_path: str = 'result'):
108
    """Draw boxes on images."""
109
    image = np.array(PIL.Image.open(image_path))
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    plt.figure()
    _, ax = plt.subplots(1)
    ax.imshow(image)

    image_name = image_path.split('/')[-1]
    print("Image {} detect: ".format(image_name))
    colors = {}
    for box, score, label in zip(boxes, scores, labels):
        if score < score_thresh:
            continue
        if box[2] <= box[0] or box[3] <= box[1]:
            continue
        label = int(label)
        if label not in colors:
            colors[label] = plt.get_cmap('hsv')(label / len(label_names))
        x1, y1, x2, y2 = box[0], box[1], box[2], box[3]
        rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, linewidth=2.0, edgecolor=colors[label])
        ax.add_patch(rect)
H
haoyuying 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140
        ax.text(
            x1,
            y1,
            '{} {:.4f}'.format(label_names[label], score),
            verticalalignment='bottom',
            horizontalalignment='left',
            bbox={
                'facecolor': colors[label],
                'alpha': 0.5,
                'pad': 0
            },
            fontsize=8,
            color='white')
141 142 143 144 145
        print("\t {:15s} at {:25} score: {:.5f}".format(label_names[int(label)], str(list(map(int, list(box)))), score))
    image_name = image_name.replace('jpg', 'png')
    plt.axis('off')
    plt.gca().xaxis.set_major_locator(plt.NullLocator())
    plt.gca().yaxis.set_major_locator(plt.NullLocator())
H
haoyuying 已提交
146
    plt.savefig("{}/{}".format(save_path, image_name), bbox_inches='tight', pad_inches=0.0)
147 148 149 150
    plt.cla()
    plt.close('all')


H
haoyuying 已提交
151
def get_label_infos(file_list: str) -> str:
H
haoyuying 已提交
152
    """Get label names by corresponding category ids."""
153
    from pycocotools.coco import COCO
H
haoyuying 已提交
154 155 156 157 158 159
    map_label = COCO(file_list)
    label_names = []
    categories = map_label.loadCats(map_label.getCatIds())
    for category in categories:
        label_names.append(category['name'])
    return label_names
H
haoyuying 已提交
160 161


H
haoyuying 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
def subtract_imagenet_mean_batch(batch: paddle.Tensor) -> paddle.Tensor:
    """Subtract ImageNet mean pixel-wise from a BGR image."""
    mean = np.zeros(shape=batch.shape, dtype='float32')
    mean[:, 0, :, :] = 103.939
    mean[:, 1, :, :] = 116.779
    mean[:, 2, :, :] = 123.680
    mean = paddle.to_tensor(mean)
    return batch - mean


def gram_matrix(data: paddle.Tensor) -> paddle.Tensor:
    """Get gram matrix"""
    b, ch, h, w = data.shape
    features = data.reshape((b, ch, w * h))
    features_t = features.transpose((0, 2, 1))
    gram = features.bmm(features_t) / (ch * h * w)
    return gram
H
haoyuying 已提交
179 180


H
haoyuying 已提交
181
def npmax(array: np.ndarray) -> Tuple[int]:
H
haoyuying 已提交
182 183 184 185 186 187
    """Get max value and index."""
    arrayindex = array.argmax(1)
    arrayvalue = array.max(1)
    i = arrayvalue.argmax()
    j = arrayindex[i]
    return i, j
H
haoyuying 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292


def visualize(image:  Union[np.ndarray, str], result: np.ndarray, weight: float = 0.6) -> np.ndarray:
    """
    Convert segmentation result to color image, and save added image.

    Args:
        image (str|np.ndarray): The path of origin image or bgr image.
        result (np.ndarray): The predict result of image.
        weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6

    Returns:
        vis_result (np.ndarray): return the visualized result.
    """

    color_map = get_color_map_list(256)
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    color_map = np.array(color_map).astype("uint8")
    # Use OpenCV LUT for color mapping
    c1 = cv2.LUT(result, color_map[:, 0])
    c2 = cv2.LUT(result, color_map[:, 1])
    c3 = cv2.LUT(result, color_map[:, 2])
    pseudo_img = np.dstack((c1, c2, c3))
    if isinstance(image, str):
        im = cv2.imread(image)
    else:
        im = image
    vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0)

    return vis_result


def get_pseudo_color_map(pred: np.ndarray) -> PIL.Image.Image:
    '''visualization the segmentation mask.'''
    pred_mask = PIL.Image.fromarray(pred.astype(np.uint8), mode='P')
    color_map = get_color_map_list(256)
    pred_mask.putpalette(color_map)
    return pred_mask


def get_color_map_list(num_classes: int) -> List[int]:
    """
    Returns the color map for visualizing the segmentation mask,
    which can support arbitrary number of classes.

    Args:
        num_classes (int): Number of classes.

    Returns:
        (list). The color map.
    """

    num_classes += 1
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = color_map[3:]
    return color_map


def get_reverse_list(ori_shape: List[int], transforms: List[Callable]) -> List[tuple]:
    """
    get reverse list of transform.

    Args:
        ori_shape (list): Origin shape of image.
        transforms (list): List of transform.

    Returns:
        list: List of tuple, there are two format:
            ('resize', (h, w)) The image shape before resize,
            ('padding', (h, w)) The image shape before padding.
    """
    reverse_list = []
    h, w = ori_shape[0], ori_shape[1]
    for op in transforms:
        if op.__class__.__name__ in ['Resize', 'ResizeByLong']:
            reverse_list.append(('resize', (h, w)))
            h, w = op.target_size[0], op.target_size[1]
        if op.__class__.__name__ in ['Padding']:
            reverse_list.append(('padding', (h, w)))
            w, h = op.target_size[0], op.target_size[1]
    return reverse_list


def reverse_transform(pred: paddle.Tensor, ori_shape: List[int], transforms: List[int]) -> paddle.Tensor:
    """recover pred to origin shape"""
    reverse_list = get_reverse_list(ori_shape, transforms)
    for item in reverse_list[::-1]:
        if item[0] == 'resize':
            h, w = item[1][0], item[1][1]
            pred = F.interpolate(pred, (h, w), mode='nearest')
        elif item[0] == 'padding':
            h, w = item[1][0], item[1][1]
            pred = pred[:, :, 0:h, 0:w]
        else:
            raise Exception("Unexpected info '{}' in im_info".format(item[0]))
    return pred