predict.py 3.4 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#coding:utf-8
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
S
Steffy-zxf 已提交
15
"""Fine-tuning on classification task """
S
Steffy-zxf 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import ast
import numpy as np
import os
import time

import paddle
import paddle.fluid as fluid
import paddlehub as hub

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
parser.add_argument("--batch_size",     type=int,   default=1, help="Total examples' number in batch for training.")
parser.add_argument("--max_seq_len", type=int, default=128, help="Number of words of the longest seqence.")
S
Steffy-zxf 已提交
36
parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for fine-tuning, input should be True or False")
S
Steffy-zxf 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
args = parser.parse_args()
# yapf: enable.

if __name__ == '__main__':
    # loading Paddlehub ERNIE pretrained model
    module = hub.Module(name="ernie")
    inputs, outputs, program = module.context(max_seq_len=args.max_seq_len)

    # Sentence classification  dataset reader
    dataset = hub.dataset.NLPCC_DBQA()
    reader = hub.reader.ClassifyReader(
        dataset=dataset,
        vocab_path=module.get_vocab_path(),
        max_seq_len=args.max_seq_len)

    # Construct transfer learning network
    # Use "pooled_output" for classification tasks on an entire sentence.
    # Use "sequence_output" for token-level output.
    pooled_output = outputs["pooled_output"]

    # Setup feed list for data feeder
    # Must feed all the tensor of ERNIE's module need
    feed_list = [
        inputs["input_ids"].name,
        inputs["position_ids"].name,
        inputs["segment_ids"].name,
        inputs["input_mask"].name,
    ]

S
Steffy-zxf 已提交
66
    # Setup RunConfig for PaddleHub Fine-tune API
S
Steffy-zxf 已提交
67 68 69 70 71 72 73
    config = hub.RunConfig(
        use_data_parallel=False,
        use_cuda=args.use_gpu,
        batch_size=args.batch_size,
        checkpoint_dir=args.checkpoint_dir,
        strategy=hub.finetune.strategy.DefaultFinetuneStrategy())

S
Steffy-zxf 已提交
74
    # Define a classfication fine-tune task by PaddleHub's API
S
Steffy-zxf 已提交
75 76 77 78 79 80 81 82 83 84 85 86
    cls_task = hub.TextClassifierTask(
        data_reader=reader,
        feature=pooled_output,
        feed_list=feed_list,
        num_classes=dataset.num_labels,
        config=config)

    # Data to be prdicted
    data = [["北京奥运博物馆的场景效果负责人是谁?", "主要承担奥运文物征集、保管、研究和爱国主义教育基地建设相关工作。"],
            ["北京奥运博物馆的场景效果负责人是谁", "于海勃,美国加利福尼亚大学教授 场景效果负责人 总设计师"],
            ["北京奥运博物馆的场景效果负责人是谁?", "洪麦恩,清华大学美术学院教授 内容及主展线负责人 总设计师"]]

K
kinghuin 已提交
87
    print(cls_task.predict(data=data, return_result=True))