Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
b155543d
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
1 年多 前同步成功
通知
283
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b155543d
编写于
6月 28, 2019
作者:
S
Steffy-zxf
提交者:
wuzewu
6月 28, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add the Q&A demo (ernie) (#67)
上级
7bfe5f8a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
222 addition
and
0 deletion
+222
-0
demo/qa_classification/classifier.py
demo/qa_classification/classifier.py
+93
-0
demo/qa_classification/predict.py
demo/qa_classification/predict.py
+104
-0
demo/qa_classification/run_classifier.sh
demo/qa_classification/run_classifier.sh
+20
-0
demo/qa_classification/run_predict.sh
demo/qa_classification/run_predict.sh
+5
-0
未找到文件。
demo/qa_classification/classifier.py
0 → 100644
浏览文件 @
b155543d
#coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification task """
import
argparse
import
ast
import
paddle.fluid
as
fluid
import
paddlehub
as
hub
# yapf: disable
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
3
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether use GPU for finetuning, input should be True or False"
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
5e-5
,
help
=
"Learning rate used to train with warmup."
)
parser
.
add_argument
(
"--weight_decay"
,
type
=
float
,
default
=
0.01
,
help
=
"Weight decay rate for L2 regularizer."
)
parser
.
add_argument
(
"--warmup_proportion"
,
type
=
float
,
default
=
0.0
,
help
=
"Warmup proportion params for warmup strategy"
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory to model checkpoint"
)
parser
.
add_argument
(
"--max_seq_len"
,
type
=
int
,
default
=
512
,
help
=
"Number of words of the longest seqence."
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
32
,
help
=
"Total examples' number in batch for training."
)
parser
.
add_argument
(
"--use_pyreader"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether use pyreader to feed data."
)
parser
.
add_argument
(
"--use_data_parallel"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether use data parallel."
)
args
=
parser
.
parse_args
()
# yapf: enable.
if
__name__
==
'__main__'
:
# Load Paddlehub ERNIE pretrained model
module
=
hub
.
Module
(
name
=
"ernie"
)
# module = hub.Module(name="bert_multi_cased_L-12_H-768_A-12")
inputs
,
outputs
,
program
=
module
.
context
(
trainable
=
True
,
max_seq_len
=
args
.
max_seq_len
)
# Download dataset and use ClassifyReader to read dataset
dataset
=
hub
.
dataset
.
NLPCC_DBQA
()
reader
=
hub
.
reader
.
ClassifyReader
(
dataset
=
dataset
,
vocab_path
=
module
.
get_vocab_path
(),
max_seq_len
=
args
.
max_seq_len
)
# Construct transfer learning network
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_output" for token-level output.
pooled_output
=
outputs
[
"pooled_output"
]
# Setup feed list for data feeder
# Must feed all the tensor of ERNIE's module need
feed_list
=
[
inputs
[
"input_ids"
].
name
,
inputs
[
"position_ids"
].
name
,
inputs
[
"segment_ids"
].
name
,
inputs
[
"input_mask"
].
name
,
]
# Select finetune strategy, setup config and finetune
strategy
=
hub
.
AdamWeightDecayStrategy
(
weight_decay
=
args
.
weight_decay
,
learning_rate
=
args
.
learning_rate
,
lr_scheduler
=
"linear_decay"
)
# Setup runing config for PaddleHub Finetune API
config
=
hub
.
RunConfig
(
use_data_parallel
=
args
.
use_data_parallel
,
use_pyreader
=
args
.
use_pyreader
,
use_cuda
=
args
.
use_gpu
,
num_epoch
=
args
.
num_epoch
,
batch_size
=
args
.
batch_size
,
checkpoint_dir
=
args
.
checkpoint_dir
,
strategy
=
strategy
)
# Define a classfication finetune task by PaddleHub's API
cls_task
=
hub
.
TextClassifierTask
(
data_reader
=
reader
,
feature
=
pooled_output
,
feed_list
=
feed_list
,
num_classes
=
dataset
.
num_labels
,
config
=
config
)
# Finetune and evaluate by PaddleHub's API
# will finish training, evaluation, testing, save model automatically
cls_task
.
finetune_and_eval
()
demo/qa_classification/predict.py
0 → 100644
浏览文件 @
b155543d
#coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification task """
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
argparse
import
ast
import
numpy
as
np
import
os
import
time
import
paddle
import
paddle.fluid
as
fluid
import
paddlehub
as
hub
# yapf: disable
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory to model checkpoint"
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
1
,
help
=
"Total examples' number in batch for training."
)
parser
.
add_argument
(
"--max_seq_len"
,
type
=
int
,
default
=
128
,
help
=
"Number of words of the longest seqence."
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether use GPU for finetuning, input should be True or False"
)
parser
.
add_argument
(
"--use_pyreader"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether use pyreader to feed data."
)
args
=
parser
.
parse_args
()
# yapf: enable.
if
__name__
==
'__main__'
:
# loading Paddlehub ERNIE pretrained model
module
=
hub
.
Module
(
name
=
"ernie"
)
inputs
,
outputs
,
program
=
module
.
context
(
max_seq_len
=
args
.
max_seq_len
)
# Sentence classification dataset reader
dataset
=
hub
.
dataset
.
NLPCC_DBQA
()
reader
=
hub
.
reader
.
ClassifyReader
(
dataset
=
dataset
,
vocab_path
=
module
.
get_vocab_path
(),
max_seq_len
=
args
.
max_seq_len
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Construct transfer learning network
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_output" for token-level output.
pooled_output
=
outputs
[
"pooled_output"
]
# Setup feed list for data feeder
# Must feed all the tensor of ERNIE's module need
feed_list
=
[
inputs
[
"input_ids"
].
name
,
inputs
[
"position_ids"
].
name
,
inputs
[
"segment_ids"
].
name
,
inputs
[
"input_mask"
].
name
,
]
# Setup runing config for PaddleHub Finetune API
config
=
hub
.
RunConfig
(
use_data_parallel
=
False
,
use_pyreader
=
args
.
use_pyreader
,
use_cuda
=
args
.
use_gpu
,
batch_size
=
args
.
batch_size
,
enable_memory_optim
=
False
,
checkpoint_dir
=
args
.
checkpoint_dir
,
strategy
=
hub
.
finetune
.
strategy
.
DefaultFinetuneStrategy
())
# Define a classfication finetune task by PaddleHub's API
cls_task
=
hub
.
TextClassifierTask
(
data_reader
=
reader
,
feature
=
pooled_output
,
feed_list
=
feed_list
,
num_classes
=
dataset
.
num_labels
,
config
=
config
)
# Data to be prdicted
data
=
[[
"北京奥运博物馆的场景效果负责人是谁?"
,
"主要承担奥运文物征集、保管、研究和爱国主义教育基地建设相关工作。"
],
[
"北京奥运博物馆的场景效果负责人是谁"
,
"于海勃,美国加利福尼亚大学教授 场景效果负责人 总设计师"
],
[
"北京奥运博物馆的场景效果负责人是谁?"
,
"洪麦恩,清华大学美术学院教授 内容及主展线负责人 总设计师"
]]
index
=
0
run_states
=
cls_task
.
predict
(
data
=
data
)
results
=
[
run_state
.
run_results
for
run_state
in
run_states
]
max_probs
=
0
for
index
,
batch_result
in
enumerate
(
results
):
# get predict index
if
max_probs
<=
batch_result
[
0
][
0
,
1
]:
max_probs
=
batch_result
[
0
][
0
,
1
]
max_flag
=
index
print
(
"question:%s
\t
the predict answer:%s
\t
"
%
(
data
[
max_flag
][
0
],
data
[
max_flag
][
1
]))
demo/qa_classification/run_classifier.sh
0 → 100644
浏览文件 @
b155543d
export
FLAGS_eager_delete_tensor_gb
=
0.0
export
CUDA_VISIBLE_DEVICES
=
0
CKPT_DIR
=
"./ckpt_qa"
# Recommending hyper parameters for difference task
# ChnSentiCorp: batch_size=24, weight_decay=0.01, num_epoch=3, max_seq_len=128, lr=5e-5
# NLPCC_DBQA: batch_size=8, weight_decay=0.01, num_epoch=3, max_seq_len=512, lr=2e-5
# LCQMC: batch_size=32, weight_decay=0, num_epoch=3, max_seq_len=128, lr=2e-5
python
-u
classifier.py
\
--batch_size
=
24
\
--use_gpu
=
True
\
--checkpoint_dir
=
${
CKPT_DIR
}
\
--learning_rate
=
5e-5
\
--weight_decay
=
0.01
\
--max_seq_len
=
128
\
--num_epoch
=
3
\
--use_pyreader
=
False
\
--use_data_parallel
=
False
\
demo/qa_classification/run_predict.sh
0 → 100644
浏览文件 @
b155543d
export
FLAGS_eager_delete_tensor_gb
=
0.0
export
CUDA_VISIBLE_DEVICES
=
0
CKPT_DIR
=
"./ckpt_qa"
python
-u
predict.py
--checkpoint_dir
$CKPT_DIR
--max_seq_len
128
--use_gpu
False
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录