model.py 4.7 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import urllib.request

C
chenjian 已提交
17 18
import cv2 as cv
import numpy as np
C
chenjian 已提交
19 20 21
import paddle
import paddle.nn.functional as F
from paddle.vision.transforms import functional
C
chenjian 已提交
22 23 24 25
from PIL import Image
from ppgan.models.generators import DecoderNet
from ppgan.models.generators import Encoder
from ppgan.models.generators import RevisionNet
C
chenjian 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
from ppgan.utils.visual import tensor2img


def img(img):
    # some images have 4 channels
    if img.shape[2] > 3:
        img = img[:, :, :3]
    # HWC to CHW
    return img


def img_totensor(content_img, style_img):
    if content_img.ndim == 2:
        content_img = cv.cvtColor(content_img, cv.COLOR_GRAY2RGB)
    else:
        content_img = cv.cvtColor(content_img, cv.COLOR_BGR2RGB)
    h, w, c = content_img.shape
    content_img = Image.fromarray(content_img)
    content_img = content_img.resize((512, 512), Image.BILINEAR)
    content_img = np.array(content_img)
    content_img = img(content_img)
    content_img = functional.to_tensor(content_img)

    style_img = cv.cvtColor(style_img, cv.COLOR_BGR2RGB)
    style_img = Image.fromarray(style_img)
    style_img = style_img.resize((512, 512), Image.BILINEAR)
    style_img = np.array(style_img)
    style_img = img(style_img)
    style_img = functional.to_tensor(style_img)

    content_img = paddle.unsqueeze(content_img, axis=0)
    style_img = paddle.unsqueeze(style_img, axis=0)
    return content_img, style_img, h, w


def tensor_resample(tensor, dst_size, mode='bilinear'):
    return F.interpolate(tensor, dst_size, mode=mode, align_corners=False)


def laplacian(x):
    """
    Laplacian

    return:
       x - upsample(downsample(x))
    """
    return x - tensor_resample(tensor_resample(x, [x.shape[2] // 2, x.shape[3] // 2]), [x.shape[2], x.shape[3]])


def make_laplace_pyramid(x, levels):
    """
    Make Laplacian Pyramid
    """
    pyramid = []
    current = x
    for i in range(levels):
        pyramid.append(laplacian(current))
        current = tensor_resample(current, (max(current.shape[2] // 2, 1), max(current.shape[3] // 2, 1)))
    pyramid.append(current)
    return pyramid


def fold_laplace_pyramid(pyramid):
    """
    Fold Laplacian Pyramid
    """
    current = pyramid[-1]
    for i in range(len(pyramid) - 2, -1, -1):  # iterate from len-2 to 0
        up_h, up_w = pyramid[i].shape[2], pyramid[i].shape[3]
        current = pyramid[i] + tensor_resample(current, (up_h, up_w))
    return current


class LapStylePredictor:
    def __init__(self, weight_path=None):

        self.net_enc = Encoder()
        self.net_dec = DecoderNet()
        self.net_rev = RevisionNet()
        self.net_rev_2 = RevisionNet()

        self.net_enc.set_dict(paddle.load(weight_path)['net_enc'])
        self.net_enc.eval()
        self.net_dec.set_dict(paddle.load(weight_path)['net_dec'])
        self.net_dec.eval()
        self.net_rev.set_dict(paddle.load(weight_path)['net_rev'])
        self.net_rev.eval()
        self.net_rev_2.set_dict(paddle.load(weight_path)['net_rev_2'])
        self.net_rev_2.eval()

    def run(self, content_img, style_image):
        content_img, style_img, h, w = img_totensor(content_img, style_image)
        pyr_ci = make_laplace_pyramid(content_img, 2)
        pyr_si = make_laplace_pyramid(style_img, 2)
        pyr_ci.append(content_img)
        pyr_si.append(style_img)
        cF = self.net_enc(pyr_ci[2])
        sF = self.net_enc(pyr_si[2])
        stylized_small = self.net_dec(cF, sF)
        stylized_up = F.interpolate(stylized_small, scale_factor=2)

        revnet_input = paddle.concat(x=[pyr_ci[1], stylized_up], axis=1)
        stylized_rev_lap = self.net_rev(revnet_input)
        stylized_rev = fold_laplace_pyramid([stylized_rev_lap, stylized_small])

        stylized_up = F.interpolate(stylized_rev, scale_factor=2)

        revnet_input = paddle.concat(x=[pyr_ci[0], stylized_up], axis=1)
        stylized_rev_lap_second = self.net_rev_2(revnet_input)
        stylized_rev_second = fold_laplace_pyramid([stylized_rev_lap_second, stylized_rev_lap, stylized_small])

        stylized = stylized_rev_second
        stylized_visual = tensor2img(stylized, min_max=(0., 1.))

        return stylized_visual