nlp_module.py 24.5 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
#
3
# Licensed under the Apache License, Version 2.0 (the "License");
4 5 6 7 8 9 10 11 12 13 14
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# FIXME(zhangxuefei): remove this file after paddlenlp is released.
16

17 18 19 20 21 22 23
import copy
import functools
import inspect
import io
import json
import os
import six
K
KP 已提交
24
from typing import List, Tuple
25 26 27 28 29

import paddle
import paddle.nn as nn
from paddle.dataset.common import DATA_HOME
from paddle.utils.download import get_path_from_url
30
from paddlehub.module.module import serving, RunModule, runnable
31 32 33 34 35 36

from paddlehub.utils.log import logger

__all__ = [
    'PretrainedModel',
    'register_base_model',
37
    'TransformerModule',
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
]


def fn_args_to_dict(func, *args, **kwargs):
    """
    Inspect function `func` and its arguments for running, and extract a
    dict mapping between argument names and keys.
    """
    if hasattr(inspect, 'getfullargspec'):
        (spec_args, spec_varargs, spec_varkw, spec_defaults, _, _, _) = inspect.getfullargspec(func)
    else:
        (spec_args, spec_varargs, spec_varkw, spec_defaults) = inspect.getargspec(func)
    # add positional argument values
    init_dict = dict(zip(spec_args, args))
    # add default argument values
    kwargs_dict = dict(zip(spec_args[-len(spec_defaults):], spec_defaults)) if spec_defaults else {}
    kwargs_dict.update(kwargs)
    init_dict.update(kwargs_dict)
    return init_dict


class InitTrackerMeta(type(nn.Layer)):
    """
    This metaclass wraps the `__init__` method of a class to add `init_config`
    attribute for instances of that class, and `init_config` use a dict to track
    the initial configuration. If the class has `_wrap_init` method, it would be
    hooked after `__init__` and called as `_wrap_init(self, init_fn, init_args)`.
    Since InitTrackerMeta would be used as metaclass for pretrained model classes,
    which always are Layer and `type(nn.Layer)` is not `type`, thus use `type(nn.Layer)`
    rather than `type` as base class for it to avoid inheritance metaclass
    conflicts.
    """

    def __init__(cls, name, bases, attrs):
        init_func = cls.__init__
        # If attrs has `__init__`, wrap it using accessable `_wrap_init`.
        # Otherwise, no need to wrap again since the super cls has been wraped.
        # TODO: remove reduplicated tracker if using super cls `__init__`
        help_func = getattr(cls, '_wrap_init', None) if '__init__' in attrs else None
        cls.__init__ = InitTrackerMeta.init_and_track_conf(init_func, help_func)
        super(InitTrackerMeta, cls).__init__(name, bases, attrs)

    @staticmethod
    def init_and_track_conf(init_func, help_func=None):
        """
        wraps `init_func` which is `__init__` method of a class to add `init_config`
        attribute for instances of that class.
        Args:
            init_func (callable): It should be the `__init__` method of a class.
            help_func (callable, optional): If provided, it would be hooked after
                `init_func` and called as `_wrap_init(self, init_func, *init_args, **init_args)`.
                Default None.

        Returns:
            function: the wrapped function
        """

        @functools.wraps(init_func)
        def __impl__(self, *args, **kwargs):
            # keep full configuration
            init_func(self, *args, **kwargs)
            # registed helper by `_wrap_init`
            if help_func:
                help_func(self, init_func, *args, **kwargs)
            self.init_config = kwargs
            if args:
                kwargs['init_args'] = args
            kwargs['init_class'] = self.__class__.__name__

        return __impl__


def register_base_model(cls):
    """
    Add a `base_model_class` attribute for the base class of decorated class,
    representing the base model class in derived classes of the same architecture.
    Args:
        cls (class): the name of the model
    """
    base_cls = cls.__bases__[0]
    assert issubclass(base_cls,
                      PretrainedModel), "`register_base_model` should be used on subclasses of PretrainedModel."
    base_cls.base_model_class = cls
    return cls


@six.add_metaclass(InitTrackerMeta)
class PretrainedModel(nn.Layer):
    """
    The base class for all pretrained models. It provides some attributes and
    common methods for all pretrained models, including attributes `init_config`,
    `config` for initialized arguments and methods for saving, loading.
    It also includes some class attributes (should be set by derived classes):
    - `model_config_file` (str): represents the file name for saving and loading
      model configuration, it's value is `model_config.json`.
    - `resource_files_names` (dict): use this to map resources to specific file
      names for saving and loading.
    - `pretrained_resource_files_map` (dict): The dict has the same keys as
      `resource_files_names`, the values are also dict mapping specific pretrained
      model name to URL linking to pretrained model.
    - `pretrained_init_configuration` (dict): The dict has pretrained model names
      as keys, and the values are also dict preserving corresponding configuration
      for model initialization.

    - `base_model_prefix` (str): represents the the attribute associated to the
      base model in derived classes of the same architecture adding layers on
      top of the base model.
    """
    model_config_file = "model_config.json"
    pretrained_init_configuration = {}
    # TODO: more flexible resource handle, namedtuple with fileds as:
    # resource_name, saved_file, handle_name_for_load(None for used as __init__
    # arguments), handle_name_for_save
    resource_files_names = {"model_state": "model_state.pdparams"}
    pretrained_resource_files_map = {}
    base_model_prefix = ""

    def _wrap_init(self, original_init, *args, **kwargs):
        """
        It would be hooked after `__init__` to add a dict including arguments of
        `__init__` as a attribute named `config` of the prtrained model instance.
        """
        init_dict = fn_args_to_dict(original_init, *args, **kwargs)
        self.config = init_dict

    @property
    def base_model(self):
        return getattr(self, self.base_model_prefix, self)

    @property
    def model_name_list(self):
        return list(self.pretrained_init_configuration.keys())

    def get_input_embeddings(self):
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError

    def get_output_embeddings(self):
        return None  # Overwrite for models with output embeddings

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
        """
        Instantiate an instance of `PretrainedModel` from a predefined
        model specified by name or path.
        Args:
            pretrained_model_name_or_path (str): A name of or a file path to a
                pretrained model.
            *args (tuple): position arguments for `__init__`. If provide, use
                this as position argument values for model initialization.
            **kwargs (dict): keyword arguments for `__init__`. If provide, use
                this to update pre-defined keyword argument values for model
                initialization.
        Returns:
            PretrainedModel: An instance of PretrainedModel.
        """
        pretrained_models = list(cls.pretrained_init_configuration.keys())
        resource_files = {}
        init_configuration = {}
        if pretrained_model_name_or_path in pretrained_models:
            for file_id, map_list in cls.pretrained_resource_files_map.items():
                resource_files[file_id] = map_list[pretrained_model_name_or_path]
            init_configuration = copy.deepcopy(cls.pretrained_init_configuration[pretrained_model_name_or_path])
        else:
            if os.path.isdir(pretrained_model_name_or_path):
                for file_id, file_name in cls.resource_files_names.items():
                    full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
                    resource_files[file_id] = full_file_name
                resource_files["model_config_file"] = os.path.join(pretrained_model_name_or_path, cls.model_config_file)
            else:
                raise ValueError("Calling {}.from_pretrained() with a model identifier or the "
                                 "path to a directory instead. The supported model "
                                 "identifiers are as follows: {}".format(cls.__name__,
                                                                         cls.pretrained_init_configuration.keys()))
        # FIXME(chenzeyu01): We should use another data path for storing model
        default_root = os.path.join(DATA_HOME, pretrained_model_name_or_path)
        resolved_resource_files = {}
        for file_id, file_path in resource_files.items():
            path = os.path.join(default_root, file_path.split('/')[-1])
            if file_path is None or os.path.isfile(file_path):
                resolved_resource_files[file_id] = file_path
            elif os.path.exists(path):
                logger.info("Already cached %s" % path)
                resolved_resource_files[file_id] = path
            else:
                logger.info("Downloading %s and saved to %s" % (file_path, default_root))
                resolved_resource_files[file_id] = get_path_from_url(file_path, default_root)

        # Prepare model initialization kwargs
        # Did we saved some inputs and kwargs to reload ?
        model_config_file = resolved_resource_files.pop("model_config_file", None)
        if model_config_file is not None:
            with io.open(model_config_file, encoding="utf-8") as f:
                init_kwargs = json.load(f)
        else:
            init_kwargs = init_configuration
        # position args are stored in kwargs, maybe better not include
        init_args = init_kwargs.pop("init_args", ())
        # class name corresponds to this configuration
        init_class = init_kwargs.pop("init_class", cls.base_model_class.__name__)

        # Check if the loaded config matches the current model class's __init__
        # arguments. If not match, the loaded config is for the base model class.
        if init_class == cls.base_model_class.__name__:
            base_args = init_args
            base_kwargs = init_kwargs
            derived_args = ()
            derived_kwargs = {}
            base_arg_index = None
        else:  # extract config for base model
            derived_args = list(init_args)
            derived_kwargs = init_kwargs
            for i, arg in enumerate(init_args):
                if isinstance(arg, dict) and "init_class" in arg:
                    assert arg.pop("init_class") == cls.base_model_class.__name__, (
                        "pretrained base model should be {}").format(cls.base_model_class.__name__)
                    base_arg_index = i
                    break
            for arg_name, arg in init_kwargs.items():
                if isinstance(arg, dict) and "init_class" in arg:
                    assert arg.pop("init_class") == cls.base_model_class.__name__, (
                        "pretrained base model should be {}").format(cls.base_model_class.__name__)
                    base_arg_index = arg_name
                    break
            base_args = arg.pop("init_args", ())
            base_kwargs = arg
        if cls == cls.base_model_class:
            # Update with newly provided args and kwargs for base model
            base_args = base_args if not args else args
            base_kwargs.update(kwargs)
            model = cls(*base_args, **base_kwargs)
        else:
            # Update with newly provided args and kwargs for derived model
            base_model = cls.base_model_class(*base_args, **base_kwargs)
            if base_arg_index is not None:
                derived_args[base_arg_index] = base_model
            else:
                derived_args = (base_model, )  # assume at the first position
            derived_args = derived_args if not args else args
            derived_kwargs.update(kwargs)
            model = cls(*derived_args, **derived_kwargs)

        # Maybe need more ways to load resources.
        weight_path = list(resolved_resource_files.values())[0]
        assert weight_path.endswith(".pdparams"), "suffix of weight must be .pdparams"
        state_dict = paddle.load(weight_path)

        # Make sure we are able to load base models as well as derived models
        # (with heads)
        start_prefix = ""
        model_to_load = model
        state_to_load = state_dict
        unexpected_keys = []
        missing_keys = []
        if not hasattr(model, cls.base_model_prefix) and any(
                s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
            # base model
            state_to_load = {}
            start_prefix = cls.base_model_prefix + "."
            for k, v in state_dict.items():
                if k.startswith(cls.base_model_prefix):
                    state_to_load[k[len(start_prefix):]] = v
                else:
                    unexpected_keys.append(k)
        if hasattr(model,
                   cls.base_model_prefix) and not any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
            # derived model (base model with heads)
            model_to_load = getattr(model, cls.base_model_prefix)
            for k in model.state_dict().keys():
                if not k.startswith(cls.base_model_prefix):
                    missing_keys.append(k)
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(model.__class__.__name__,
                                                                                  unexpected_keys))
        model_to_load.set_state_dict(state_to_load)
        if paddle.in_dynamic_mode():
            return model
        return model, state_to_load

    def save_pretrained(self, save_directory):
        """
        Save model configuration and related resources (model state) to files
        under `save_directory`.
        Args:
            save_directory (str): Directory to save files into.
        """
        assert os.path.isdir(save_directory), "Saving directory ({}) should be a directory".format(save_directory)
        # save model config
        model_config_file = os.path.join(save_directory, self.model_config_file)
        model_config = self.init_config
        # If init_config contains a Layer, use the layer's init_config to save
        for key, value in model_config.items():
            if key == "init_args":
                args = []
                for arg in value:
                    args.append(arg.init_config if isinstance(arg, PretrainedModel) else arg)
                model_config[key] = tuple(args)
            elif isinstance(value, PretrainedModel):
                model_config[key] = value.init_config
        with io.open(model_config_file, "w", encoding="utf-8") as f:
            f.write(json.dumps(model_config, ensure_ascii=False))
        # save model
        file_name = os.path.join(save_directory, list(self.resource_files_names.values())[0])
        paddle.save(self.state_dict(), file_name)
348 349


K
KP 已提交
350 351 352 353
class TextServing(object):
    """
    A base class for text model which supports serving.
    """
354
    @serving
K
KP 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368
    def predict_method(
            self,
            data: List[List[str]],
            max_seq_len: int = 128,
            batch_size: int = 1,
            use_gpu: bool = False
    ):
        """
        Run predict method as a service.
        Serving as a task which is specified from serving config.
        Tasks supported:
        1. seq-cls: sequence classification;
        2. token-cls: sequence labeling;
        3. None: embedding.
369

K
KP 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
        Args:
            data (obj:`List(List(str))`): The processed data whose each element is the list of a single text or a pair of texts.
            max_seq_len (:obj:`int`, `optional`, defaults to 128):
                If set to a number, will limit the total sequence returned so that it has a maximum length.
            batch_size(obj:`int`, defaults to 1): The number of batch.
            use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.

        Returns:
            results(obj:`list`): All the predictions labels.
        """
        if self.task in self._tasks_supported:  # cls service
            if self.label_map:
                # compatible with json decoding label_map
                self.label_map = {int(k): v for k, v in self.label_map.items()}
            results = self.predict(data, max_seq_len, batch_size, use_gpu)

            if self.task == 'token-cls':
                # remove labels of [CLS] token and pad tokens
                results = [
                    token_labels[1:len(data[i][0])+1] for i, token_labels in enumerate(results)
                ]
            return results
        elif self.task is None:                 # embedding service
            token_results, sentence_results = self.get_embedding(data, max_seq_len, batch_size, use_gpu)
            token_results = [
                token_embeddings[1:len(data[i][0])+1] for i, token_embeddings in enumerate(token_results)
            ]
            return token_results, sentence_results
        else:                                   # unknown service
            logger.error(
                f'Unknown task {self.task}, current tasks supported:\n'
                '1. seq-cls: sequence classification service;\n'
                '2. token-cls: sequence labeling service;\n'
                '3. None: embedding service'
            )
        return


class TransformerModule(RunModule, TextServing):
    """
    The base class for Transformer models.
    """
    _tasks_supported = [
        'seq-cls',
        'token-cls',
    ]

    def _batchify(self, data: List[List[str]], max_seq_len: int, batch_size: int):
        def _parse_batch(batch):
            input_ids = [entry[0] for entry in batch]
            segment_ids = [entry[1] for entry in batch]
            return input_ids, segment_ids
422 423

        tokenizer = self.get_tokenizer()
K
KP 已提交
424 425
        examples = []
        for text in data:
426
            if len(text) == 1:
K
KP 已提交
427
                encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
428
            elif len(text) == 2:
K
KP 已提交
429
                encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
430 431 432
            else:
                raise RuntimeError(
                    'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
K
KP 已提交
433
            examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
434

K
KP 已提交
435 436 437 438 439 440 441 442 443 444
        # Seperates data into some batches.
        one_batch = []
        for example in examples:
            one_batch.append(example)
            if len(one_batch) == batch_size:
                yield _parse_batch(one_batch)
                one_batch = []
        if one_batch:
            # The last batch whose size is less than the config batch_size setting.
            yield _parse_batch(one_batch)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

    def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
        """
        One step for training, which should be called as forward computation.
        Args:
            batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
                such as input_ids, sent_ids, pos_ids, input_mask and labels.
            batch_idx(int): The index of batch.
        Returns:
            results(:obj: Dict) : The model outputs, such as loss and metrics.
        """
        predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
        return {'loss': avg_loss, 'metrics': {'acc': acc}}

    def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
        """
        One step for validation, which should be called as forward computation.
        Args:
            batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
                such as input_ids, sent_ids, pos_ids, input_mask and labels.
            batch_idx(int): The index of batch.
        Returns:
            results(:obj: Dict) : The model outputs, such as metrics.
        """
        predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
        return {'metrics': {'acc': acc}}

K
KP 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    def get_embedding(self, data: List[List[str]], max_seq_len=128, batch_size=1, use_gpu=False):
        """
        Get token level embeddings and sentence level embeddings from model.
        Args:
            data (obj:`List(List(str))`): The processed data whose each element is the list of a single text or a pair of texts.
            max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
                If set to a number, will limit the total sequence returned so that it has a maximum length.
            batch_size(obj:`int`, defaults to 1): The number of batch.
            use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.

        Returns:
            results(obj:`list`): All the tokens and sentences embeddings.
        """
        if self.task is not None:
            raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)

        return self.predict(
            data=data,
            max_seq_len=max_seq_len,
            batch_size=batch_size,
            use_gpu=use_gpu
        )

    def predict(
            self,
            data: List[List[str]],
            max_seq_len: int = 128,
            batch_size: int = 1,
            use_gpu: bool = False
    ):
502 503 504 505
        """
        Predicts the data labels.

        Args:
K
KP 已提交
506
            data (obj:`List(List(str))`): The processed data whose each element is the list of a single text or a pair of texts.
507 508 509 510 511 512 513 514
            max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
                If set to a number, will limit the total sequence returned so that it has a maximum length.
            batch_size(obj:`int`, defaults to 1): The number of batch.
            use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.

        Returns:
            results(obj:`list`): All the predictions labels.
        """
K
KP 已提交
515 516 517 518 519 520 521 522
        if self.task not in self._tasks_supported \
                and self.task is not None:      # None for getting embedding
            raise RuntimeError(
                f'Unknown task {self.task}, current tasks supported:\n'
                '1. seq-cls: sequence classification;\n'
                '2. token-cls: sequence labeling;\n'
                '3. None: embedding'
            )
523 524 525

        paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')

K
KP 已提交
526
        batches = self._batchify(data, max_seq_len, batch_size)
527 528 529
        results = []
        self.eval()
        for batch in batches:
K
KP 已提交
530
            input_ids, segment_ids = batch
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
            input_ids = paddle.to_tensor(input_ids)
            segment_ids = paddle.to_tensor(segment_ids)

            if self.task == 'seq-cls':
                probs = self(input_ids, segment_ids)
                idx = paddle.argmax(probs, axis=1).numpy()
                idx = idx.tolist()
                labels = [self.label_map[i] for i in idx]
                results.extend(labels)
            elif self.task == 'token-cls':
                probs = self(input_ids, segment_ids)
                batch_ids = paddle.argmax(probs, axis=2).numpy()  # (batch_size, max_seq_len)
                batch_ids = batch_ids.tolist()
                token_labels = [[self.label_map[i] for i in token_ids] for token_ids in batch_ids]
                results.extend(token_labels)
K
KP 已提交
546 547 548 549 550 551
            elif self.task == None:
                if not results:
                    results = [[], []]
                sequence_output, pooled_output = self(input_ids, segment_ids)
                results[0].extend(sequence_output.numpy().tolist())  # token-level embedding
                results[1].extend(pooled_output.numpy().tolist())    # sentence-level embedding
552 553

        return results