nlp_module.py 15.6 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
#
3
# Licensed under the Apache License, Version 2.0 (the "License");
4 5 6 7 8 9 10 11 12 13 14
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# FIXME(zhangxuefei): remove this file after paddlenlp is released.
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
import copy
import functools
import inspect
import io
import json
import os
import six

import paddle
import paddle.nn as nn
from paddle.dataset.common import DATA_HOME
from paddle.utils.download import get_path_from_url

from paddlehub.utils.log import logger

__all__ = [
    'PretrainedModel',
    'register_base_model',
]


def fn_args_to_dict(func, *args, **kwargs):
    """
    Inspect function `func` and its arguments for running, and extract a
    dict mapping between argument names and keys.
    """
    if hasattr(inspect, 'getfullargspec'):
        (spec_args, spec_varargs, spec_varkw, spec_defaults, _, _, _) = inspect.getfullargspec(func)
    else:
        (spec_args, spec_varargs, spec_varkw, spec_defaults) = inspect.getargspec(func)
    # add positional argument values
    init_dict = dict(zip(spec_args, args))
    # add default argument values
    kwargs_dict = dict(zip(spec_args[-len(spec_defaults):], spec_defaults)) if spec_defaults else {}
    kwargs_dict.update(kwargs)
    init_dict.update(kwargs_dict)
    return init_dict


class InitTrackerMeta(type(nn.Layer)):
    """
    This metaclass wraps the `__init__` method of a class to add `init_config`
    attribute for instances of that class, and `init_config` use a dict to track
    the initial configuration. If the class has `_wrap_init` method, it would be
    hooked after `__init__` and called as `_wrap_init(self, init_fn, init_args)`.
    Since InitTrackerMeta would be used as metaclass for pretrained model classes,
    which always are Layer and `type(nn.Layer)` is not `type`, thus use `type(nn.Layer)`
    rather than `type` as base class for it to avoid inheritance metaclass
    conflicts.
    """

    def __init__(cls, name, bases, attrs):
        init_func = cls.__init__
        # If attrs has `__init__`, wrap it using accessable `_wrap_init`.
        # Otherwise, no need to wrap again since the super cls has been wraped.
        # TODO: remove reduplicated tracker if using super cls `__init__`
        help_func = getattr(cls, '_wrap_init', None) if '__init__' in attrs else None
        cls.__init__ = InitTrackerMeta.init_and_track_conf(init_func, help_func)
        super(InitTrackerMeta, cls).__init__(name, bases, attrs)

    @staticmethod
    def init_and_track_conf(init_func, help_func=None):
        """
        wraps `init_func` which is `__init__` method of a class to add `init_config`
        attribute for instances of that class.
        Args:
            init_func (callable): It should be the `__init__` method of a class.
            help_func (callable, optional): If provided, it would be hooked after
                `init_func` and called as `_wrap_init(self, init_func, *init_args, **init_args)`.
                Default None.

        Returns:
            function: the wrapped function
        """

        @functools.wraps(init_func)
        def __impl__(self, *args, **kwargs):
            # keep full configuration
            init_func(self, *args, **kwargs)
            # registed helper by `_wrap_init`
            if help_func:
                help_func(self, init_func, *args, **kwargs)
            self.init_config = kwargs
            if args:
                kwargs['init_args'] = args
            kwargs['init_class'] = self.__class__.__name__

        return __impl__


def register_base_model(cls):
    """
    Add a `base_model_class` attribute for the base class of decorated class,
    representing the base model class in derived classes of the same architecture.
    Args:
        cls (class): the name of the model
    """
    base_cls = cls.__bases__[0]
    assert issubclass(base_cls,
                      PretrainedModel), "`register_base_model` should be used on subclasses of PretrainedModel."
    base_cls.base_model_class = cls
    return cls


@six.add_metaclass(InitTrackerMeta)
class PretrainedModel(nn.Layer):
    """
    The base class for all pretrained models. It provides some attributes and
    common methods for all pretrained models, including attributes `init_config`,
    `config` for initialized arguments and methods for saving, loading.
    It also includes some class attributes (should be set by derived classes):
    - `model_config_file` (str): represents the file name for saving and loading
      model configuration, it's value is `model_config.json`.
    - `resource_files_names` (dict): use this to map resources to specific file
      names for saving and loading.
    - `pretrained_resource_files_map` (dict): The dict has the same keys as
      `resource_files_names`, the values are also dict mapping specific pretrained
      model name to URL linking to pretrained model.
    - `pretrained_init_configuration` (dict): The dict has pretrained model names
      as keys, and the values are also dict preserving corresponding configuration
      for model initialization.

    - `base_model_prefix` (str): represents the the attribute associated to the
      base model in derived classes of the same architecture adding layers on
      top of the base model.
    """
    model_config_file = "model_config.json"
    pretrained_init_configuration = {}
    # TODO: more flexible resource handle, namedtuple with fileds as:
    # resource_name, saved_file, handle_name_for_load(None for used as __init__
    # arguments), handle_name_for_save
    resource_files_names = {"model_state": "model_state.pdparams"}
    pretrained_resource_files_map = {}
    base_model_prefix = ""

    def _wrap_init(self, original_init, *args, **kwargs):
        """
        It would be hooked after `__init__` to add a dict including arguments of
        `__init__` as a attribute named `config` of the prtrained model instance.
        """
        init_dict = fn_args_to_dict(original_init, *args, **kwargs)
        self.config = init_dict

    @property
    def base_model(self):
        return getattr(self, self.base_model_prefix, self)

    @property
    def model_name_list(self):
        return list(self.pretrained_init_configuration.keys())

    def get_input_embeddings(self):
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError

    def get_output_embeddings(self):
        return None  # Overwrite for models with output embeddings

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
        """
        Instantiate an instance of `PretrainedModel` from a predefined
        model specified by name or path.
        Args:
            pretrained_model_name_or_path (str): A name of or a file path to a
                pretrained model.
            *args (tuple): position arguments for `__init__`. If provide, use
                this as position argument values for model initialization.
            **kwargs (dict): keyword arguments for `__init__`. If provide, use
                this to update pre-defined keyword argument values for model
                initialization.
        Returns:
            PretrainedModel: An instance of PretrainedModel.
        """
        pretrained_models = list(cls.pretrained_init_configuration.keys())
        resource_files = {}
        init_configuration = {}
        if pretrained_model_name_or_path in pretrained_models:
            for file_id, map_list in cls.pretrained_resource_files_map.items():
                resource_files[file_id] = map_list[pretrained_model_name_or_path]
            init_configuration = copy.deepcopy(cls.pretrained_init_configuration[pretrained_model_name_or_path])
        else:
            if os.path.isdir(pretrained_model_name_or_path):
                for file_id, file_name in cls.resource_files_names.items():
                    full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
                    resource_files[file_id] = full_file_name
                resource_files["model_config_file"] = os.path.join(pretrained_model_name_or_path, cls.model_config_file)
            else:
                raise ValueError("Calling {}.from_pretrained() with a model identifier or the "
                                 "path to a directory instead. The supported model "
                                 "identifiers are as follows: {}".format(cls.__name__,
                                                                         cls.pretrained_init_configuration.keys()))
        # FIXME(chenzeyu01): We should use another data path for storing model
        default_root = os.path.join(DATA_HOME, pretrained_model_name_or_path)
        resolved_resource_files = {}
        for file_id, file_path in resource_files.items():
            path = os.path.join(default_root, file_path.split('/')[-1])
            if file_path is None or os.path.isfile(file_path):
                resolved_resource_files[file_id] = file_path
            elif os.path.exists(path):
                logger.info("Already cached %s" % path)
                resolved_resource_files[file_id] = path
            else:
                logger.info("Downloading %s and saved to %s" % (file_path, default_root))
                resolved_resource_files[file_id] = get_path_from_url(file_path, default_root)

        # Prepare model initialization kwargs
        # Did we saved some inputs and kwargs to reload ?
        model_config_file = resolved_resource_files.pop("model_config_file", None)
        if model_config_file is not None:
            with io.open(model_config_file, encoding="utf-8") as f:
                init_kwargs = json.load(f)
        else:
            init_kwargs = init_configuration
        # position args are stored in kwargs, maybe better not include
        init_args = init_kwargs.pop("init_args", ())
        # class name corresponds to this configuration
        init_class = init_kwargs.pop("init_class", cls.base_model_class.__name__)

        # Check if the loaded config matches the current model class's __init__
        # arguments. If not match, the loaded config is for the base model class.
        if init_class == cls.base_model_class.__name__:
            base_args = init_args
            base_kwargs = init_kwargs
            derived_args = ()
            derived_kwargs = {}
            base_arg_index = None
        else:  # extract config for base model
            derived_args = list(init_args)
            derived_kwargs = init_kwargs
            for i, arg in enumerate(init_args):
                if isinstance(arg, dict) and "init_class" in arg:
                    assert arg.pop("init_class") == cls.base_model_class.__name__, (
                        "pretrained base model should be {}").format(cls.base_model_class.__name__)
                    base_arg_index = i
                    break
            for arg_name, arg in init_kwargs.items():
                if isinstance(arg, dict) and "init_class" in arg:
                    assert arg.pop("init_class") == cls.base_model_class.__name__, (
                        "pretrained base model should be {}").format(cls.base_model_class.__name__)
                    base_arg_index = arg_name
                    break
            base_args = arg.pop("init_args", ())
            base_kwargs = arg
        if cls == cls.base_model_class:
            # Update with newly provided args and kwargs for base model
            base_args = base_args if not args else args
            base_kwargs.update(kwargs)
            model = cls(*base_args, **base_kwargs)
        else:
            # Update with newly provided args and kwargs for derived model
            base_model = cls.base_model_class(*base_args, **base_kwargs)
            if base_arg_index is not None:
                derived_args[base_arg_index] = base_model
            else:
                derived_args = (base_model, )  # assume at the first position
            derived_args = derived_args if not args else args
            derived_kwargs.update(kwargs)
            model = cls(*derived_args, **derived_kwargs)

        # Maybe need more ways to load resources.
        weight_path = list(resolved_resource_files.values())[0]
        assert weight_path.endswith(".pdparams"), "suffix of weight must be .pdparams"
        state_dict = paddle.load(weight_path)

        # Make sure we are able to load base models as well as derived models
        # (with heads)
        start_prefix = ""
        model_to_load = model
        state_to_load = state_dict
        unexpected_keys = []
        missing_keys = []
        if not hasattr(model, cls.base_model_prefix) and any(
                s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
            # base model
            state_to_load = {}
            start_prefix = cls.base_model_prefix + "."
            for k, v in state_dict.items():
                if k.startswith(cls.base_model_prefix):
                    state_to_load[k[len(start_prefix):]] = v
                else:
                    unexpected_keys.append(k)
        if hasattr(model,
                   cls.base_model_prefix) and not any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
            # derived model (base model with heads)
            model_to_load = getattr(model, cls.base_model_prefix)
            for k in model.state_dict().keys():
                if not k.startswith(cls.base_model_prefix):
                    missing_keys.append(k)
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(model.__class__.__name__,
                                                                                  unexpected_keys))
        model_to_load.set_state_dict(state_to_load)
        if paddle.in_dynamic_mode():
            return model
        return model, state_to_load

    def save_pretrained(self, save_directory):
        """
        Save model configuration and related resources (model state) to files
        under `save_directory`.
        Args:
            save_directory (str): Directory to save files into.
        """
        assert os.path.isdir(save_directory), "Saving directory ({}) should be a directory".format(save_directory)
        # save model config
        model_config_file = os.path.join(save_directory, self.model_config_file)
        model_config = self.init_config
        # If init_config contains a Layer, use the layer's init_config to save
        for key, value in model_config.items():
            if key == "init_args":
                args = []
                for arg in value:
                    args.append(arg.init_config if isinstance(arg, PretrainedModel) else arg)
                model_config[key] = tuple(args)
            elif isinstance(value, PretrainedModel):
                model_config[key] = value.init_config
        with io.open(model_config_file, "w", encoding="utf-8") as f:
            f.write(json.dumps(model_config, ensure_ascii=False))
        # save model
        file_name = os.path.join(save_directory, list(self.resource_files_names.values())[0])
        paddle.save(self.state_dict(), file_name)