vgg.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Tuple

import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D

from paddleseg.utils import utils


class ConvBlock(nn.Layer):
    def __init__(self, input_channels: int, output_channels: int, groups: int, name: str = None):
        super(ConvBlock, self).__init__()

        self.groups = groups
        self._conv_1 = Conv2D(
            in_channels=input_channels,
            out_channels=output_channels,
            kernel_size=3,
            stride=1,
            padding=1,
            weight_attr=ParamAttr(name=name + "1_weights"),
            bias_attr=False)
        if groups == 2 or groups == 3 or groups == 4:
            self._conv_2 = Conv2D(
                in_channels=output_channels,
                out_channels=output_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(name=name + "2_weights"),
                bias_attr=False)
        if groups == 3 or groups == 4:
            self._conv_3 = Conv2D(
                in_channels=output_channels,
                out_channels=output_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(name=name + "3_weights"),
                bias_attr=False)
        if groups == 4:
            self._conv_4 = Conv2D(
                in_channels=output_channels,
                out_channels=output_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(name=name + "4_weights"),
                bias_attr=False)

        self._pool = MaxPool2D(
            kernel_size=2, stride=2, padding=0, return_mask=True)

    def forward(self, inputs: paddle.Tensor) -> List[paddle.Tensor]:
        x = self._conv_1(inputs)
        x = F.relu(x)
        if self.groups == 2 or self.groups == 3 or self.groups == 4:
            x = self._conv_2(x)
            x = F.relu(x)
        if self.groups == 3 or self.groups == 4:
            x = self._conv_3(x)
            x = F.relu(x)
        if self.groups == 4:
            x = self._conv_4(x)
            x = F.relu(x)
        skip = x
        x, max_indices = self._pool(x)
        return x, max_indices, skip


class VGGNet(nn.Layer):
    def __init__(self, input_channels: int = 4, layers: int = 11, pretrained: str = None):
        super(VGGNet, self).__init__()
        self.pretrained = pretrained

        self.layers = layers
        self.vgg_configure = {
            11: [1, 1, 2, 2, 2],
            13: [2, 2, 2, 2, 2],
            16: [2, 2, 3, 3, 3],
            19: [2, 2, 4, 4, 4]
        }
        assert self.layers in self.vgg_configure.keys(), \
            "supported layers are {} but input layer is {}".format(
                self.vgg_configure.keys(), layers)
        self.groups = self.vgg_configure[self.layers]

        # matting的第一层卷积输入为4通道,初始化是直接初始化为0
        self._conv_block_1 = ConvBlock(
            input_channels, 64, self.groups[0], name="conv1_")
        self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_")
        self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_")
        self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_")
        self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_")

        # 这一层的初始化需要利用vgg fc6的参数转换后进行初始化,可以暂时不考虑初始化
        self._conv_6 = Conv2D(
            512, 512, kernel_size=3, padding=1, bias_attr=False)

    def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
        fea_list = []
        ids_list = []
        x, ids, skip = self._conv_block_1(inputs)
        fea_list.append(skip)
        ids_list.append(ids)
        x, ids, skip = self._conv_block_2(x)
        fea_list.append(skip)
        ids_list.append(ids)
        x, ids, skip = self._conv_block_3(x)
        fea_list.append(skip)
        ids_list.append(ids)
        x, ids, skip = self._conv_block_4(x)
        fea_list.append(skip)
        ids_list.append(ids)
        x, ids, skip = self._conv_block_5(x)
        fea_list.append(skip)
        ids_list.append(ids)
        x = F.relu(self._conv_6(x))
        fea_list.append(x)
        return fea_list


def VGG16(**args):
    model = VGGNet(layers=16, **args)
    return model