# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Tuple import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import Conv2D, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from paddleseg.utils import utils class ConvBlock(nn.Layer): def __init__(self, input_channels: int, output_channels: int, groups: int, name: str = None): super(ConvBlock, self).__init__() self.groups = groups self._conv_1 = Conv2D( in_channels=input_channels, out_channels=output_channels, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(name=name + "1_weights"), bias_attr=False) if groups == 2 or groups == 3 or groups == 4: self._conv_2 = Conv2D( in_channels=output_channels, out_channels=output_channels, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(name=name + "2_weights"), bias_attr=False) if groups == 3 or groups == 4: self._conv_3 = Conv2D( in_channels=output_channels, out_channels=output_channels, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(name=name + "3_weights"), bias_attr=False) if groups == 4: self._conv_4 = Conv2D( in_channels=output_channels, out_channels=output_channels, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(name=name + "4_weights"), bias_attr=False) self._pool = MaxPool2D( kernel_size=2, stride=2, padding=0, return_mask=True) def forward(self, inputs: paddle.Tensor) -> List[paddle.Tensor]: x = self._conv_1(inputs) x = F.relu(x) if self.groups == 2 or self.groups == 3 or self.groups == 4: x = self._conv_2(x) x = F.relu(x) if self.groups == 3 or self.groups == 4: x = self._conv_3(x) x = F.relu(x) if self.groups == 4: x = self._conv_4(x) x = F.relu(x) skip = x x, max_indices = self._pool(x) return x, max_indices, skip class VGGNet(nn.Layer): def __init__(self, input_channels: int = 4, layers: int = 11, pretrained: str = None): super(VGGNet, self).__init__() self.pretrained = pretrained self.layers = layers self.vgg_configure = { 11: [1, 1, 2, 2, 2], 13: [2, 2, 2, 2, 2], 16: [2, 2, 3, 3, 3], 19: [2, 2, 4, 4, 4] } assert self.layers in self.vgg_configure.keys(), \ "supported layers are {} but input layer is {}".format( self.vgg_configure.keys(), layers) self.groups = self.vgg_configure[self.layers] # matting的第一层卷积输入为4通道,初始化是直接初始化为0 self._conv_block_1 = ConvBlock( input_channels, 64, self.groups[0], name="conv1_") self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_") self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_") self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_") self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_") # 这一层的初始化需要利用vgg fc6的参数转换后进行初始化,可以暂时不考虑初始化 self._conv_6 = Conv2D( 512, 512, kernel_size=3, padding=1, bias_attr=False) def forward(self, inputs: paddle.Tensor) -> paddle.Tensor: fea_list = [] ids_list = [] x, ids, skip = self._conv_block_1(inputs) fea_list.append(skip) ids_list.append(ids) x, ids, skip = self._conv_block_2(x) fea_list.append(skip) ids_list.append(ids) x, ids, skip = self._conv_block_3(x) fea_list.append(skip) ids_list.append(ids) x, ids, skip = self._conv_block_4(x) fea_list.append(skip) ids_list.append(ids) x, ids, skip = self._conv_block_5(x) fea_list.append(skip) ids_list.append(ids) x = F.relu(self._conv_6(x)) fea_list.append(x) return fea_list def VGG16(**args): model = VGGNet(layers=16, **args) return model