reading_comprehension_task.py 22.9 KB
Newer Older
K
kinghuin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#coding:utf-8
#  Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time
K
kinghuin 已提交
21 22 23 24 25 26
import os
import collections
import math
import six
import json

K
kinghuin 已提交
27 28
from collections import OrderedDict

K
kinghuin 已提交
29
import io
K
kinghuin 已提交
30 31
import numpy as np
import paddle.fluid as fluid
K
kinghuin 已提交
32
from .base_task import BaseTask
K
kinghuin 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
from paddlehub.common.logger import logger
from paddlehub.reader import tokenization
from paddlehub.finetune.evaluator import squad1_evaluate
from paddlehub.finetune.evaluator import squad2_evaluate
from paddlehub.finetune.evaluator import cmrc2018_evaluate


def _get_best_indexes(logits, n_best_size):
    """Get the n-best logits from a list."""
    index_and_score = sorted(
        enumerate(logits), key=lambda x: x[1], reverse=True)

    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes


def _compute_softmax(scores):
    """Compute softmax probability over raw logits."""
    if not scores:
        return []

    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score

    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x

    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs


def get_final_text(pred_text, orig_text, do_lower_case, is_english):
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the SQuAD eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
    # Therefore, we have to apply a semi-complicated alignment heruistic between
    # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for (i, c) in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.
    tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)

    if is_english:
        tok_text = " ".join(tokenizer.tokenize(orig_text))
    else:
        tok_text = "".join(tokenizer.tokenize(orig_text))

    start_position = tok_text.find(pred_text)
    if start_position == -1:
        # using in debug
        # logger.info(
        #     "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
        # using in debug
        # logger.info("Length not equal after stripping spaces: '%s' vs '%s'",
        #                 orig_ns_text, tok_ns_text)
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
    for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
        # using in debug
        # logger.info("Couldn't map start position")
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
        # using in debug
        # tf.logging.info("Couldn't map end position")
        return orig_text

    output_text = orig_text[orig_start_position:(orig_end_position + 1)]
    return output_text


K
kinghuin 已提交
175 176 177 178
def get_predictions(all_examples, all_features, all_results, n_best_size,
                    max_answer_length, do_lower_case, version_2_with_negative,
                    null_score_diff_threshold, is_english):

K
kinghuin 已提交
179 180 181 182 183
    _PrelimPrediction = collections.namedtuple("PrelimPrediction", [
        "feature_index", "start_index", "end_index", "start_logit", "end_logit"
    ])
    _NbestPrediction = collections.namedtuple(
        "NbestPrediction", ["text", "start_logit", "end_logit"])
K
kinghuin 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    scores_diff_json = collections.OrderedDict()

    for (example_index, example) in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
        # keep track of the minimum score of null start+end of position 0
        score_null = 1000000  # large and positive
        min_null_feature_index = 0  # the paragraph slice with min mull score
        null_start_logit = 0  # the start logit at the slice with min null score
        null_end_logit = 0  # the end logit at the slice with min null score
        for (feature_index, feature) in enumerate(features):
            if feature.unique_id not in unique_id_to_result:
                logger.info(
K
kinghuin 已提交
208
                    "As using multidevice, the last one batch is so small that the feature %s in the last batch is discarded "
K
kinghuin 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
                    % feature.unique_id)
                continue
            result = unique_id_to_result[feature.unique_id]
            start_indexes = _get_best_indexes(result.start_logits, n_best_size)
            end_indexes = _get_best_indexes(result.end_logits, n_best_size)

            # if we could have irrelevant answers, get the min score of irrelevant
            if version_2_with_negative:
                feature_null_score = result.start_logits[0] + result.end_logits[
                    0]
                if feature_null_score < score_null:
                    score_null = feature_null_score
                    min_null_feature_index = feature_index
                    null_start_logit = result.start_logits[0]
                    null_end_logit = result.end_logits[0]

            for start_index in start_indexes:
                for end_index in end_indexes:
                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= len(feature.tokens):
                        continue
                    if end_index >= len(feature.tokens):
                        continue
                    if start_index not in feature.token_to_orig_map:
                        continue
                    if end_index not in feature.token_to_orig_map:
                        continue
                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index]))

        if version_2_with_negative:
            prelim_predictions.append(
                _PrelimPrediction(
                    feature_index=min_null_feature_index,
                    start_index=0,
                    end_index=0,
                    start_logit=null_start_logit,
                    end_logit=null_end_logit))
        prelim_predictions = sorted(
            prelim_predictions,
            key=lambda x: (x.start_logit + x.end_logit),
            reverse=True)

        seen_predictions = {}
        nbest = []
        if not prelim_predictions:
            logger.warning(("not prelim_predictions:", example.qas_id))
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]
            if pred.start_index > 0:  # this is a non-null prediction
                tok_tokens = feature.tokens[pred.start_index:(
                    pred.end_index + 1)]
                orig_doc_start = feature.token_to_orig_map[pred.start_index]
                orig_doc_end = feature.token_to_orig_map[pred.end_index]
                orig_tokens = example.doc_tokens[orig_doc_start:(
                    orig_doc_end + 1)]
                if is_english:
                    tok_text = " ".join(tok_tokens)
                else:
                    tok_text = "".join(tok_tokens)
                # De-tokenize WordPieces that have been split off.
                tok_text = tok_text.replace(" ##", "")
                tok_text = tok_text.replace("##", "")

                # Clean whitespace
                tok_text = tok_text.strip()
                tok_text = " ".join(tok_text.split())
                if is_english:
                    orig_text = " ".join(orig_tokens)
                else:
                    orig_text = "".join(orig_tokens)

                final_text = get_final_text(tok_text, orig_text, do_lower_case,
                                            is_english)
                if final_text in seen_predictions:
                    continue

                seen_predictions[final_text] = True
            else:
                final_text = ""
                seen_predictions[final_text] = True

            nbest.append(
                _NbestPrediction(
                    text=final_text,
                    start_logit=pred.start_logit,
                    end_logit=pred.end_logit))

        # if we didn't include the empty option in the n-best, include it
        if version_2_with_negative:
            if "" not in seen_predictions:
                nbest.append(
                    _NbestPrediction(
                        text="",
                        start_logit=null_start_logit,
                        end_logit=null_end_logit))
        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(
                _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))

        assert len(nbest) >= 1

        total_scores = []
        best_non_null_entry = None
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)
            if not best_non_null_entry:
                if entry.text:
                    best_non_null_entry = entry

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_json.append(output)

        assert len(nbest_json) >= 1

        if not version_2_with_negative:
            all_predictions[example.qas_id] = nbest_json[0]["text"]
        else:
            # predict "" iff the null score - the score of best non-null > threshold
            score_diff = score_null
            if best_non_null_entry:
                score_diff -= best_non_null_entry.start_logit + best_non_null_entry.end_logit
            scores_diff_json[example.qas_id] = score_diff
            if score_diff > null_score_diff_threshold:
                all_predictions[example.qas_id] = ""
            else:
                all_predictions[example.qas_id] = best_non_null_entry.text

        all_nbest_json[example.qas_id] = nbest_json
K
kinghuin 已提交
364 365

    return all_predictions, all_nbest_json, scores_diff_json
K
kinghuin 已提交
366 367


K
kinghuin 已提交
368
class ReadingComprehensionTask(BaseTask):
K
kinghuin 已提交
369 370 371 372 373 374
    def __init__(self,
                 feature,
                 feed_list,
                 data_reader,
                 startup_program=None,
                 config=None,
K
kinghuin 已提交
375 376 377 378 379
                 metrics_choices=None,
                 sub_task="squad",
                 null_score_diff_threshold=0.0,
                 n_best_size=20,
                 max_answer_length=30):
K
kinghuin 已提交
380 381 382 383 384 385 386 387 388 389

        main_program = feature.block.program
        super(ReadingComprehensionTask, self).__init__(
            data_reader=data_reader,
            main_program=main_program,
            feed_list=feed_list,
            startup_program=startup_program,
            config=config,
            metrics_choices=metrics_choices)
        self.feature = feature
K
kinghuin 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402
        self.data_reader = data_reader
        self.sub_task = sub_task.lower()
        self.version_2_with_negative = (self.sub_task == "squad2.0")
        if self.sub_task in ["squad2.0", "squad"]:
            self.is_english = True
        elif self.sub_task in ["cmrc2018", "drcd"]:
            self.is_english = False
        else:
            raise Exception("No language type of data set is sepecified")

        self.null_score_diff_threshold = null_score_diff_threshold
        self.n_best_size = n_best_size
        self.max_answer_length = max_answer_length
K
kinghuin 已提交
403 404
        self.RawResult = collections.namedtuple(
            "RawResult", ["unique_id", "start_logits", "end_logits"])
K
kinghuin 已提交
405

K
kinghuin 已提交
406 407 408
        self.RawResult = collections.namedtuple(
            "RawResult", ["unique_id", "start_logits", "end_logits"])

K
kinghuin 已提交
409
    def _build_net(self):
K
kinghuin 已提交
410 411
        self.unique_ids = fluid.layers.data(
            name="unique_ids", shape=[-1, 1], lod_level=0, dtype="int64")
412 413
        # to avoid memory optimization
        _ = fluid.layers.assign(self.unique_ids)
K
kinghuin 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        logits = fluid.layers.fc(
            input=self.feature,
            size=2,
            num_flatten_dims=2,
            param_attr=fluid.ParamAttr(
                name="cls_seq_label_out_w",
                initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
            bias_attr=fluid.ParamAttr(
                name="cls_seq_label_out_b",
                initializer=fluid.initializer.Constant(0.)))

        logits = fluid.layers.transpose(x=logits, perm=[2, 0, 1])
        start_logits, end_logits = fluid.layers.unstack(x=logits, axis=0)

        batch_ones = fluid.layers.fill_constant_batch_size_like(
            input=start_logits, dtype='int64', shape=[1], value=1)
        num_seqs = fluid.layers.reduce_sum(input=batch_ones)

        return [start_logits, end_logits, num_seqs]

    def _add_label(self):
        start_positions = fluid.layers.data(
            name="start_positions", shape=[-1, 1], lod_level=0, dtype="int64")
        end_positions = fluid.layers.data(
            name="end_positions", shape=[-1, 1], lod_level=0, dtype="int64")
        return [start_positions, end_positions]

    def _add_loss(self):
        start_positions = self.labels[0]
        end_positions = self.labels[1]

        start_logits = self.outputs[0]
        end_logits = self.outputs[1]

        start_loss = fluid.layers.softmax_with_cross_entropy(
            logits=start_logits, label=start_positions)
        start_loss = fluid.layers.mean(x=start_loss)
        end_loss = fluid.layers.softmax_with_cross_entropy(
            logits=end_logits, label=end_positions)
        end_loss = fluid.layers.mean(x=end_loss)
        total_loss = (start_loss + end_loss) / 2.0
        return total_loss

    def _add_metrics(self):
        return []

    @property
    def feed_list(self):
K
kinghuin 已提交
462 463 464 465
        feed_list = [varname for varname in self._base_feed_list
                     ] + [self.unique_ids.name]
        if self.is_train_phase or self.is_test_phase:
            feed_list += [label.name for label in self.labels]
K
kinghuin 已提交
466 467 468 469
        return feed_list

    @property
    def fetch_list(self):
K
kinghuin 已提交
470 471 472 473 474
        if self.is_train_phase or self.is_test_phase:
            return [
                self.loss.name, self.outputs[-1].name, self.unique_ids.name,
                self.outputs[0].name, self.outputs[1].name
            ]
K
kinghuin 已提交
475
        elif self.is_predict_phase:
K
kinghuin 已提交
476 477 478
            return [
                self.unique_ids.name,
            ] + [output.name for output in self.outputs]
K
kinghuin 已提交
479 480

    def _calculate_metrics(self, run_states):
K
kinghuin 已提交
481 482
        total_cost, total_num_seqs, all_results = [], [], []
        run_step = 0
K
kinghuin 已提交
483 484 485 486 487 488
        for run_state in run_states:
            np_loss = run_state.run_results[0]
            np_num_seqs = run_state.run_results[1]
            total_cost.extend(np_loss * np_num_seqs)
            total_num_seqs.extend(np_num_seqs)
            run_step += run_state.run_step
K
kinghuin 已提交
489 490 491 492 493 494 495 496 497
            if self.is_test_phase:
                np_unique_ids = run_state.run_results[2]
                np_start_logits = run_state.run_results[3]
                np_end_logits = run_state.run_results[4]
                for idx in range(np_unique_ids.shape[0]):
                    unique_id = int(np_unique_ids[idx])
                    start_logits = [float(x) for x in np_start_logits[idx].flat]
                    end_logits = [float(x) for x in np_end_logits[idx].flat]
                    all_results.append(
K
kinghuin 已提交
498
                        self.RawResult(
K
kinghuin 已提交
499 500 501
                            unique_id=unique_id,
                            start_logits=start_logits,
                            end_logits=end_logits))
K
kinghuin 已提交
502 503 504 505 506 507

        run_time_used = time.time() - run_states[0].run_time_begin
        run_speed = run_step / run_time_used
        avg_loss = np.sum(total_cost) / np.sum(total_num_seqs)
        scores = OrderedDict()
        # If none of metrics has been implemented, loss will be used to evaluate.
K
kinghuin 已提交
508 509 510
        if self.is_test_phase:
            all_examples = self.data_reader.all_examples[self.phase]
            all_features = self.data_reader.all_features[self.phase]
K
kinghuin 已提交
511
            all_predictions, all_nbest_json, scores_diff_json = get_predictions(
K
kinghuin 已提交
512 513 514 515 516 517 518 519 520 521
                all_examples=all_examples,
                all_features=all_features,
                all_results=all_results,
                n_best_size=self.n_best_size,
                max_answer_length=self.max_answer_length,
                do_lower_case=True,
                version_2_with_negative=self.version_2_with_negative,
                null_score_diff_threshold=self.null_score_diff_threshold,
                is_english=self.is_english)
            if self.phase == 'val' or self.phase == 'dev':
K
kinghuin 已提交
522
                with io.open(
K
kinghuin 已提交
523
                        self.data_reader.dataset.dev_path, 'r',
K
kinghuin 已提交
524 525 526 527
                        encoding="utf8") as dataset_file:
                    dataset_json = json.load(dataset_file)
                    dataset = dataset_json['data']
            elif self.phase == 'test':
K
kinghuin 已提交
528
                with io.open(
K
kinghuin 已提交
529
                        self.data_reader.dataset.test_path, 'r',
K
kinghuin 已提交
530 531 532 533 534 535 536 537
                        encoding="utf8") as dataset_file:
                    dataset_json = json.load(dataset_file)
                    dataset = dataset_json['data']
            else:
                raise Exception("Error phase: %s when runing _calculate_metrics"
                                % self.phase)

            if self.sub_task == "squad":
K
kinghuin 已提交
538
                scores = squad1_evaluate.evaluate(dataset, all_predictions)
K
kinghuin 已提交
539
            elif self.sub_task == "squad2.0":
K
kinghuin 已提交
540 541
                scores = squad2_evaluate.evaluate(dataset, all_predictions,
                                                  scores_diff_json)
K
kinghuin 已提交
542
            elif self.sub_task in ["cmrc2018", "drcd"]:
K
kinghuin 已提交
543
                scores = cmrc2018_evaluate.get_eval(dataset, all_predictions)
K
kinghuin 已提交
544
        return scores, avg_loss, run_speed
K
kinghuin 已提交
545

K
kinghuin 已提交
546
    def _postprocessing(self, run_states):
K
kinghuin 已提交
547 548 549 550 551 552 553 554 555 556
        all_results = []
        for run_state in run_states:
            np_unique_ids = run_state.run_results[0]
            np_start_logits = run_state.run_results[1]
            np_end_logits = run_state.run_results[2]
            for idx in range(np_unique_ids.shape[0]):
                unique_id = int(np_unique_ids[idx])
                start_logits = [float(x) for x in np_start_logits[idx].flat]
                end_logits = [float(x) for x in np_end_logits[idx].flat]
                all_results.append(
K
kinghuin 已提交
557
                    self.RawResult(
K
kinghuin 已提交
558 559 560 561 562
                        unique_id=unique_id,
                        start_logits=start_logits,
                        end_logits=end_logits))
        all_examples = self.data_reader.all_examples[self.phase]
        all_features = self.data_reader.all_features[self.phase]
K
kinghuin 已提交
563
        all_predictions, all_nbest_json, scores_diff_json = get_predictions(
K
kinghuin 已提交
564 565 566 567 568 569 570 571 572
            all_examples=all_examples,
            all_features=all_features,
            all_results=all_results,
            n_best_size=self.n_best_size,
            max_answer_length=self.max_answer_length,
            do_lower_case=True,
            version_2_with_negative=self.version_2_with_negative,
            null_score_diff_threshold=self.null_score_diff_threshold,
            is_english=self.is_english)
K
kinghuin 已提交
573
        return all_predictions