reading_comprehension_task.py 4.8 KB
Newer Older
K
kinghuin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#coding:utf-8
#  Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time
from collections import OrderedDict

import numpy as np
import paddle.fluid as fluid
from .basic_task import BasicTask


class ReadingComprehensionTask(BasicTask):
    def __init__(self,
                 feature,
                 feed_list,
                 data_reader,
                 startup_program=None,
                 config=None,
                 metrics_choices=None):

        main_program = feature.block.program
        super(ReadingComprehensionTask, self).__init__(
            data_reader=data_reader,
            main_program=main_program,
            feed_list=feed_list,
            startup_program=startup_program,
            config=config,
            metrics_choices=metrics_choices)
        self.feature = feature

    def _build_net(self):
        if self.is_predict_phase:
            self.unique_id = fluid.layers.data(
                name="start_positions",
                shape=[-1, 1],
                lod_level=0,
                dtype="int64")

        logits = fluid.layers.fc(
            input=self.feature,
            size=2,
            num_flatten_dims=2,
            param_attr=fluid.ParamAttr(
                name="cls_seq_label_out_w",
                initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
            bias_attr=fluid.ParamAttr(
                name="cls_seq_label_out_b",
                initializer=fluid.initializer.Constant(0.)))

        logits = fluid.layers.transpose(x=logits, perm=[2, 0, 1])
        start_logits, end_logits = fluid.layers.unstack(x=logits, axis=0)

        batch_ones = fluid.layers.fill_constant_batch_size_like(
            input=start_logits, dtype='int64', shape=[1], value=1)
        num_seqs = fluid.layers.reduce_sum(input=batch_ones)

        return [start_logits, end_logits, num_seqs]

    def _add_label(self):
        start_positions = fluid.layers.data(
            name="start_positions", shape=[-1, 1], lod_level=0, dtype="int64")
        end_positions = fluid.layers.data(
            name="end_positions", shape=[-1, 1], lod_level=0, dtype="int64")
        return [start_positions, end_positions]

    def _add_loss(self):
        start_positions = self.labels[0]
        end_positions = self.labels[1]

        start_logits = self.outputs[0]
        end_logits = self.outputs[1]

        start_loss = fluid.layers.softmax_with_cross_entropy(
            logits=start_logits, label=start_positions)
        start_loss = fluid.layers.mean(x=start_loss)
        end_loss = fluid.layers.softmax_with_cross_entropy(
            logits=end_logits, label=end_positions)
        end_loss = fluid.layers.mean(x=end_loss)
        total_loss = (start_loss + end_loss) / 2.0
        return total_loss

    def _add_metrics(self):
        return []

    @property
    def feed_list(self):
        feed_list = [varname for varname in self._base_feed_list]
        if self.is_train_phase:
            feed_list += [self.labels[0].name, self.labels[1].name]
        elif self.is_predict_phase:
            feed_list += [self.unique_id.name]
        return feed_list

    @property
    def fetch_list(self):
        if self.is_train_phase:
            return [metric.name for metric in self.metrics
                    ] + [self.loss.name, self.outputs[-1].name]
        elif self.is_predict_phase:
            return [self.unique_id.name
                    ] + [output.name for output in self.outputs]

    def _calculate_metrics(self, run_states):
        total_cost, total_num_seqs = [], []
        run_step = run_time_used = run_examples = 0
        for run_state in run_states:
            np_loss = run_state.run_results[0]
            np_num_seqs = run_state.run_results[1]
            total_cost.extend(np_loss * np_num_seqs)
            total_num_seqs.extend(np_num_seqs)
            run_examples += run_state.run_examples
            run_step += run_state.run_step

        run_time_used = time.time() - run_states[0].run_time_begin
        run_speed = run_step / run_time_used
        avg_loss = np.sum(total_cost) / np.sum(total_num_seqs)

        scores = OrderedDict()
        # If none of metrics has been implemented, loss will be used to evaluate.
        return scores, avg_loss, run_speed