cv_module.py 11.9 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding:utf-8
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
haoyuying 已提交
16 17
import time
import os
18
from typing import List
H
haoyuying 已提交
19
from collections import OrderedDict
20

W
wuzewu 已提交
21 22
import numpy as np
import paddle
H
haoyuying 已提交
23
import paddle.nn as nn
24
import paddle.nn.functional as F
H
haoyuying 已提交
25
from PIL import Image
W
wuzewu 已提交
26 27 28

from paddlehub.module.module import serving, RunModule
from paddlehub.utils.utils import base64_to_cv2
H
haoyuying 已提交
29 30
import paddlehub.process.transforms as T
import paddlehub.process.functional as Func
W
wuzewu 已提交
31 32 33 34


class ImageServing(object):
    @serving
35
    def serving_method(self, images: List[str], **kwargs) -> List[dict]:
W
wuzewu 已提交
36 37 38 39 40 41 42
        """Run as a service."""
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.predict(images=images_decode, **kwargs)
        return results


class ImageClassifierModule(RunModule, ImageServing):
43 44 45 46 47
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
W
wuzewu 已提交
48 49
            batch(list[paddle.Tensor]) : The one batch data, which contains images and labels.
            batch_idx(int) : The index of batch.
50 51 52 53

        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
W
wuzewu 已提交
54 55
        return self.validation_step(batch, batch_idx)

56 57 58 59 60
    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
W
wuzewu 已提交
61 62
            batch(list[paddle.Tensor]) : The one batch data, which contains images and labels.
            batch_idx(int) : The index of batch.
63 64 65 66

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
W
wuzewu 已提交
67
        images = batch[0]
68
        labels = paddle.unsqueeze(batch[1], axis=-1)
W
wuzewu 已提交
69 70

        preds = self(images)
71 72 73
        loss, _ = F.softmax_with_cross_entropy(preds, labels, return_softmax=True, axis=1)
        loss = paddle.mean(loss)
        acc = paddle.metric.accuracy(preds, labels)
W
wuzewu 已提交
74 75
        return {'loss': loss, 'metrics': {'acc': acc}}

76 77 78 79 80 81 82 83 84 85 86
    def predict(self, images: List[np.ndarray], top_k: int = 1) -> List[dict]:
        '''
        Predict images

        Args:
            images(list[numpy.ndarray]) : Images to be predicted, consist of np.ndarray in bgr format.
            top_k(int) : Output top k result of each image.

        Returns:
            results(list[dict]) : The prediction result of each input image
        '''
W
wuzewu 已提交
87 88 89
        images = self.transforms(images)
        if len(images.shape) == 3:
            images = images[np.newaxis, :]
W
wuzewu 已提交
90
        preds = self(paddle.to_tensor(images))
91
        preds = F.softmax(preds, axis=1).numpy()
W
wuzewu 已提交
92 93 94 95 96 97 98 99 100
        pred_idxs = np.argsort(preds)[::-1][:, :top_k]
        res = []
        for i, pred in enumerate(pred_idxs):
            res_dict = {}
            for k in pred:
                class_name = self.labels[int(k)]
                res_dict[class_name] = preds[i][k]
            res.append(res_dict)
        return res
H
haoyuying 已提交
101 102 103 104 105 106


class ImageColorizeModule(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.
H
haoyuying 已提交
107

H
haoyuying 已提交
108 109 110
        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.
H
haoyuying 已提交
111

H
haoyuying 已提交
112 113 114 115 116 117 118 119
        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.
H
haoyuying 已提交
120

H
haoyuying 已提交
121 122 123
        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.
H
haoyuying 已提交
124

H
haoyuying 已提交
125 126 127 128
        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
        out_class, out_reg = self(batch[0], batch[1], batch[2])
H
haoyuying 已提交
129

H
haoyuying 已提交
130 131 132 133 134
        criterionCE = nn.loss.CrossEntropyLoss()
        loss_ce = criterionCE(out_class, batch[4][:, 0, :, :])
        loss_G_L1_reg = paddle.sum(paddle.abs(batch[3] - out_reg), axis=1, keepdim=True)
        loss_G_L1_reg = paddle.mean(loss_G_L1_reg)
        loss = loss_ce + loss_G_L1_reg
H
haoyuying 已提交
135

H
haoyuying 已提交
136 137
        visual_ret = OrderedDict()
        psnrs = []
H
haoyuying 已提交
138 139
        lab2rgb = T.ConvertColorSpace(mode='LAB2RGB')
        process = T.ColorPostprocess()
H
haoyuying 已提交
140 141 142 143 144
        for i in range(batch[0].numpy().shape[0]):
            real = lab2rgb(np.concatenate((batch[0].numpy(), batch[3].numpy()), axis=1))[i]
            visual_ret['real'] = process(real)
            fake = lab2rgb(np.concatenate((batch[0].numpy(), out_reg.numpy()), axis=1))[i]
            visual_ret['fake_reg'] = process(fake)
H
haoyuying 已提交
145
            mse = np.mean((visual_ret['real'] * 1.0 - visual_ret['fake_reg'] * 1.0)**2)
H
haoyuying 已提交
146 147 148 149 150 151 152 153
            psnr_value = 20 * np.log10(255. / np.sqrt(mse))
            psnrs.append(psnr_value)
        psnr = paddle.to_variable(np.array(psnrs))
        return {'loss': loss, 'metrics': {'psnr': psnr}}

    def predict(self, images: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Colorize images
H
haoyuying 已提交
154

H
haoyuying 已提交
155 156 157 158
        Args:
            images(str) : Images path to be colorized.
            visualization(bool): Whether to save colorized images.
            save_path(str) : Path to save colorized images.
H
haoyuying 已提交
159

H
haoyuying 已提交
160 161 162
        Returns:
            results(list[dict]) : The prediction result of each input image
        '''
H
haoyuying 已提交
163 164 165
        lab2rgb = T.ConvertColorSpace(mode='LAB2RGB')
        process = T.ColorPostprocess()
        resize = T.Resize((256, 256))
H
haoyuying 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        visual_ret = OrderedDict()
        im = self.transforms(images, is_train=False)
        out_class, out_reg = self(paddle.to_tensor(im['A']), paddle.to_variable(im['hint_B']),
                                  paddle.to_variable(im['mask_B']))
        result = []

        for i in range(im['A'].shape[0]):
            gray = lab2rgb(np.concatenate((im['A'], np.zeros(im['B'].shape)), axis=1))[i]
            visual_ret['gray'] = resize(process(gray))
            hint = lab2rgb(np.concatenate((im['A'], im['hint_B']), axis=1))[i]
            visual_ret['hint'] = resize(process(hint))
            real = lab2rgb(np.concatenate((im['A'], im['B']), axis=1))[i]
            visual_ret['real'] = resize(process(real))
            fake = lab2rgb(np.concatenate((im['A'], out_reg.numpy()), axis=1))[i]
            visual_ret['fake_reg'] = resize(process(fake))
H
haoyuying 已提交
181

H
haoyuying 已提交
182 183 184 185 186 187 188
            if visualization:
                fake_name = "fake_" + str(time.time()) + ".png"
                if not os.path.exists(save_path):
                    os.mkdir(save_path)
                fake_path = os.path.join(save_path, fake_name)
                visual_gray = Image.fromarray(visual_ret['fake_reg'])
                visual_gray.save(fake_path)
H
haoyuying 已提交
189 190

            mse = np.mean((visual_ret['real'] * 1.0 - visual_ret['fake_reg'] * 1.0)**2)
H
haoyuying 已提交
191 192 193
            psnr_value = 20 * np.log10(255. / np.sqrt(mse))
            result.append(visual_ret)
        return result
H
haoyuying 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222


class Yolov3Module(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images, ground truth boxes, labels and scores.
            batch_idx(int): The index of batch.

        Returns:
            results(dict): The model outputs, such as loss.
        '''

        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images, ground truth boxes, labels and scores.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
        img = batch[0].astype('float32')
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        gtbox = batch[1].astype('float32')
        gtlabel = batch[2].astype('int32')
        gtscore = batch[3].astype("float32")
        losses = []
        outputs = self(img)
        self.downsample = 32

        for i, out in enumerate(outputs):
            anchor_mask = self.anchor_masks[i]
            loss = F.yolov3_loss(x=out,
                                 gt_box=gtbox,
                                 gt_label=gtlabel,
                                 gt_score=gtscore,
                                 anchors=self.anchors,
                                 anchor_mask=anchor_mask,
                                 class_num=self.class_num,
                                 ignore_thresh=self.ignore_thresh,
                                 downsample_ratio=32,
                                 use_label_smooth=False)
            losses.append(paddle.reduce_mean(loss))
            self.downsample //= 2

        return {'loss': sum(losses)}
H
haoyuying 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

    def predict(self, imgpath: str, filelist: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Detect images

        Args:
            imgpath(str): Image path .
            filelist(str): Path to get label name.
            visualization(bool): Whether to save result image.
            save_path(str) : Path to save detected images.

        Returns:
            boxes(np.ndarray): Predict box information.
            scores(np.ndarray): Predict score.
            labels(np.ndarray): Predict labels.
        '''
262 263 264 265
        boxes = []
        scores = []
        self.downsample = 32
        im = self.transform(imgpath)
H
haoyuying 已提交
266
        h, w, c = Func.img_shape(imgpath)
267
        im_shape = paddle.to_tensor(np.array([[h, w]]).astype('int32'))
H
haoyuying 已提交
268
        label_names = self.get_label_infos(filelist)
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
        img_data = paddle.to_tensor(np.array([im]).astype('float32'))

        outputs = self(img_data)

        for i, out in enumerate(outputs):
            anchor_mask = self.anchor_masks[i]
            mask_anchors = []
            for m in anchor_mask:
                mask_anchors.append((self.anchors[2 * m]))
                mask_anchors.append(self.anchors[2 * m + 1])

            box, score = F.yolo_box(x=out,
                                    img_size=im_shape,
                                    anchors=mask_anchors,
                                    class_num=self.class_num,
                                    conf_thresh=self.valid_thresh,
                                    downsample_ratio=self.downsample,
                                    name="yolo_box" + str(i))

            boxes.append(box)
            scores.append(paddle.transpose(score, perm=[0, 2, 1]))
            self.downsample //= 2

        yolo_boxes = paddle.concat(boxes, axis=1)
        yolo_scores = paddle.concat(scores, axis=2)

        pred = F.multiclass_nms(bboxes=yolo_boxes,
                                scores=yolo_scores,
                                score_threshold=self.valid_thresh,
                                nms_top_k=self.nms_topk,
                                keep_top_k=self.nms_posk,
                                nms_threshold=self.nms_thresh,
                                background_label=-1)

        bboxes = pred.numpy()
        labels = bboxes[:, 0].astype('int32')
        scores = bboxes[:, 1].astype('float32')
        boxes = bboxes[:, 2:].astype('float32')

        if visualization:
H
haoyuying 已提交
309
            Func.draw_boxes_on_image(imgpath, boxes, scores, labels, label_names, 0.5)
H
haoyuying 已提交
310 311

        return boxes, scores, labels