module.py 7.0 KB
Newer Older
H
haoyuying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule


class ConvBNLayer(nn.Layer):
    """Basic conv bn layer."""
W
wuzewu 已提交
30

H
haoyuying 已提交
31 32 33 34 35 36 37 38 39 40
    def __init__(self,
                 num_channels: int,
                 num_filters: int,
                 filter_size: int,
                 stride: int = 1,
                 groups: int = 1,
                 act: str = None,
                 name: str = None):
        super(ConvBNLayer, self).__init__()

W
wuzewu 已提交
41 42 43 44 45 46 47 48 49
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
H
haoyuying 已提交
50 51 52 53
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
W
wuzewu 已提交
54 55 56 57 58 59 60
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
H
haoyuying 已提交
61 62 63 64 65 66 67 68 69

    def forward(self, inputs: paddle.Tensor):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class BottleneckBlock(nn.Layer):
    """Bottleneck Block for ResNeXt152."""
W
wuzewu 已提交
70

H
haoyuying 已提交
71 72 73 74 75 76 77 78 79
    def __init__(self,
                 num_channels: int,
                 num_filters: int,
                 stride: int,
                 cardinality: int,
                 shortcut: bool = True,
                 name: str = None):
        super(BottleneckBlock, self).__init__()

W
wuzewu 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        self.conv0 = ConvBNLayer(
            num_channels=num_channels, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            groups=cardinality,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 2 if cardinality == 32 else num_filters,
            filter_size=1,
            act=None,
            name=name + "_branch2c")
H
haoyuying 已提交
96 97

        if not shortcut:
W
wuzewu 已提交
98 99 100 101 102 103
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 2 if cardinality == 32 else num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")
H
haoyuying 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

        self.shortcut = shortcut

    def forward(self, inputs: paddle.Tensor):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = paddle.elementwise_add(x=short, y=conv2, act='relu')
        return y


W
wuzewu 已提交
121 122 123 124 125 126 127 128 129
@moduleinfo(
    name="resnext152_32x4d_imagenet",
    type="CV/classification",
    author="paddlepaddle",
    author_email="",
    summary="resnext152_32x4d_imagenet is a classification model, "
    "this module is trained with Baidu open sourced dataset.",
    version="1.1.0",
    meta=ImageClassifierModule)
H
haoyuying 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
class ResNeXt152_32x4d(nn.Layer):
    def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
        super(ResNeXt152_32x4d, self).__init__()

        self.layers = 152
        self.cardinality = 32
        depth = [3, 8, 36, 3]
        num_channels = [64, 256, 512, 1024]
        num_filters = [128, 256, 512, 1024]

        self.conv = ConvBNLayer(num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu', name="res_conv1")
        self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.block_list = []
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                if block == 2:
                    if i == 0:
                        conv_name = "res" + str(block + 2) + "a"
                    else:
                        conv_name = "res" + str(block + 2) + "b" + str(i)
                else:
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
W
wuzewu 已提交
156 157 158 159 160 161 162 163
                    BottleneckBlock(
                        num_channels=num_channels[block]
                        if i == 0 else num_filters[block] * int(64 // self.cardinality),
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        cardinality=self.cardinality,
                        shortcut=shortcut,
                        name=conv_name))
H
haoyuying 已提交
164 165 166 167 168 169 170
                self.block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = AdaptiveAvgPool2d(1)
        self.pool2d_avg_channels = num_channels[-1] * 2
        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

W
wuzewu 已提交
171 172 173 174 175
        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))
H
haoyuying 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

        if load_checkpoint is not None:
            model_dict = paddle.load(load_checkpoint)[0]
            self.set_dict(model_dict)
            print("load custom checkpoint success")

        else:
            checkpoint = os.path.join(self.directory, 'resnext152_32x4d_imagenet.pdparams')
            if not os.path.exists(checkpoint):
                os.system(
                    'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext152_32x4d_imagenet.pdparams -O '
                    + checkpoint)
            model_dict = paddle.load(checkpoint)[0]
            self.set_dict(model_dict)
            print("load pretrained checkpoint success")

    def forward(self, inputs: paddle.Tensor):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y