You need to sign in or sign up before continuing.
未验证 提交 93f50bee 编写于 作者: H haoyuying 提交者: GitHub

add resnext series

上级 38157d2d
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
act: str = None,
name: str = None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2d(in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt101."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(name="resnext101_32x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext101_32x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt101_32x4d(nn.Layer):
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt101_32x4d, self).__init__()
self.layers = 101
self.cardinality = 32
depth = [3, 4, 23, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [128, 256, 512, 1024]
self.conv = ConvBNLayer(num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu', name="res_conv1")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(num_channels=num_channels[block] if i == 0 else num_filters[block] *
int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext101_32x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext101_32x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv(inputs)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
act: str = None,
name: str = None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2d(in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt101."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(name="resnext101_64x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext101_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt101_64x4d(nn.Layer):
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt101_64x4d, self).__init__()
self.layers = 101
self.cardinality = 64
depth = [3, 4, 23, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [256, 512, 1024, 2048]
self.conv = ConvBNLayer(num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu', name="res_conv1")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(num_channels=num_channels[block] if i == 0 else num_filters[block] *
int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext101_64x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext101_64x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv(inputs)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(
self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
is_vd_mode: bool = False,
act: str = None,
name: str = None,
):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = AvgPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
self._conv = Conv2d(in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt50_vd."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
if_first: bool = False,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(name="resnext101_vd_32x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext101_vd_32x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt101_vd(nn.Layer):
"""ResNeXt101_vd model."""
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt101_vd, self).__init__()
self.layers = 101
self.cardinality = 32
depth = [3, 4, 23, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [128, 256, 512, 1024]
self.conv1_1 = ConvBNLayer(num_channels=3, num_filters=32, filter_size=3, stride=2, act='relu', name="conv1_1")
self.conv1_2 = ConvBNLayer(num_channels=32, num_filters=32, filter_size=3, stride=1, act='relu', name="conv1_2")
self.conv1_3 = ConvBNLayer(num_channels=32, num_filters=64, filter_size=3, stride=1, act='relu', name="conv1_3")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(num_channels=num_channels[block] if i == 0 else num_filters[block] *
int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext101_vd_32x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext101_vd_32x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(
self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
is_vd_mode: bool = False,
act: str = None,
name: str = None,
):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = AvgPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
self._conv = Conv2d(in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt50_vd."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
if_first: bool = False,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(name="resnext101_vd_64x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext101_vd_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt101_vd(nn.Layer):
"""ResNeXt101_vd model."""
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt101_vd, self).__init__()
self.layers = 101
self.cardinality = 64
depth = [3, 4, 23, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [256, 512, 1024, 2048]
self.conv1_1 = ConvBNLayer(num_channels=3, num_filters=32, filter_size=3, stride=2, act='relu', name="conv1_1")
self.conv1_2 = ConvBNLayer(num_channels=32, num_filters=32, filter_size=3, stride=1, act='relu', name="conv1_2")
self.conv1_3 = ConvBNLayer(num_channels=32, num_filters=64, filter_size=3, stride=1, act='relu', name="conv1_3")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(num_channels=num_channels[block] if i == 0 else num_filters[block] *
int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext101_vd_64x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext101_vd_64x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
act: str = None,
name: str = None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2d(in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt152."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(name="resnext152_32x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext152_32x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt152_32x4d(nn.Layer):
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt152_32x4d, self).__init__()
self.layers = 152
self.cardinality = 32
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [128, 256, 512, 1024]
self.conv = ConvBNLayer(num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu', name="res_conv1")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(num_channels=num_channels[block] if i == 0 else num_filters[block] *
int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext152_32x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext152_32x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv(inputs)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
act: str = None,
name: str = None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2d(in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt152."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(name="resnext152_64x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext152_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt152_64x4d(nn.Layer):
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt152_64x4d, self).__init__()
self.layers = 152
self.cardinality = 64
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [256, 512, 1024, 2048]
self.conv = ConvBNLayer(num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu', name="res_conv1")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(num_channels=num_channels[block] if i == 0 else num_filters[block] *
int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext152_64x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext152_64x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv(inputs)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(
self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
is_vd_mode: bool = False,
act: str = None,
name: str = None,
):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = AvgPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
self._conv = Conv2d(in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt152_vd."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
if_first: bool = False,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(name="resnext152_vd_32x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext152_vd_32x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt152_vd(nn.Layer):
"""ResNeXt152_vd model."""
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt152_vd, self).__init__()
self.layers = 152
self.cardinality = 32
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [128, 256, 512, 1024]
self.conv1_1 = ConvBNLayer(num_channels=3, num_filters=32, filter_size=3, stride=2, act='relu', name="conv1_1")
self.conv1_2 = ConvBNLayer(num_channels=32, num_filters=32, filter_size=3, stride=1, act='relu', name="conv1_2")
self.conv1_3 = ConvBNLayer(num_channels=32, num_filters=64, filter_size=3, stride=1, act='relu', name="conv1_3")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(num_channels=num_channels[block] if i == 0 else num_filters[block] *
int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext152_vd_32x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext152_vd_32x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(
self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
is_vd_mode: bool = False,
act: str = None,
name: str = None,
):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = AvgPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
self._conv = Conv2d(in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt152_vd."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
if_first: bool = False,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(name="resnext152_vd_64x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext152_vd_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt152_vd(nn.Layer):
"""ResNeXt152_vd model."""
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt152_vd, self).__init__()
self.layers = 152
self.cardinality = 64
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [256, 512, 1024, 2048]
self.conv1_1 = ConvBNLayer(num_channels=3, num_filters=32, filter_size=3, stride=2, act='relu', name="conv1_1")
self.conv1_2 = ConvBNLayer(num_channels=32, num_filters=32, filter_size=3, stride=1, act='relu', name="conv1_2")
self.conv1_3 = ConvBNLayer(num_channels=32, num_filters=64, filter_size=3, stride=1, act='relu', name="conv1_3")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(num_channels=num_channels[block] if i == 0 else num_filters[block] *
int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext152_vd_64x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext152_vd_64x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
act: str = None,
name: str = None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2d(in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt50."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(name="resnext50_32x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext50_32x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt50_32x4d(nn.Layer):
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt50_32x4d, self).__init__()
self.layers = 50
self.cardinality = 32
depth = [3, 4, 6, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [128, 256, 512, 1024]
self.conv = ConvBNLayer(num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu', name="res_conv1")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(num_channels=num_channels[block] if i == 0 else num_filters[block] *
int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext50_32x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext50_32x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv(inputs)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
act: str = None,
name: str = None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2d(in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt50."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(name="resnext50_64x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext50_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt50_64x4d(nn.Layer):
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt50_64x4d, self).__init__()
self.layers = 50
self.cardinality = 64
depth = [3, 4, 6, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [256, 512, 1024, 2048]
self.conv = ConvBNLayer(num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu', name="res_conv1")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(num_channels=num_channels[block] if i == 0 else num_filters[block] *
int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext50_64x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext50_64x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv(inputs)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(
self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
is_vd_mode: bool = False,
act: str = None,
name: str = None,
):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = AvgPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
self._conv = Conv2d(in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt50_vd."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
if_first: bool = False,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(name="resnext50_vd_32x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext50_vd_32x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt50_vd(nn.Layer):
"""ResNeXt50_vd model."""
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt50_vd, self).__init__()
self.layers = 50
self.cardinality = 32
depth = [3, 4, 6, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [128, 256, 512, 1024]
self.conv1_1 = ConvBNLayer(num_channels=3, num_filters=32, filter_size=3, stride=2, act='relu', name="conv1_1")
self.conv1_2 = ConvBNLayer(num_channels=32, num_filters=32, filter_size=3, stride=1, act='relu', name="conv1_2")
self.conv1_3 = ConvBNLayer(num_channels=32, num_filters=64, filter_size=3, stride=1, act='relu', name="conv1_3")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(num_channels=num_channels[block] if i == 0 else num_filters[block] *
int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext50_vd_32x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext50_vd_32x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule
class ConvBNLayer(nn.Layer):
"""Basic conv bn layer."""
def __init__(
self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: int = 1,
groups: int = 1,
is_vd_mode: bool = False,
act: str = None,
name: str = None,
):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = AvgPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
self._conv = Conv2d(in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs: paddle.Tensor):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
"""Bottleneck Block for ResNeXt50_vd."""
def __init__(self,
num_channels: int,
num_filters: int,
stride: int,
cardinality: int,
shortcut: bool = True,
if_first: bool = False,
name: str = None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(num_channels=num_channels,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs: paddle.Tensor):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
return y
@moduleinfo(name="resnext50_vd_64x4d_imagenet",
type="CV/classification",
author="paddlepaddle",
author_email="",
summary="resnext50_vd_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset.",
version="1.1.0",
meta=ImageClassifierModule)
class ResNeXt50_vd(nn.Layer):
"""ResNeXt50_vd model."""
def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
super(ResNeXt50_vd, self).__init__()
self.layers = 50
self.cardinality = 64
depth = [3, 4, 6, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [256, 512, 1024, 2048]
self.conv1_1 = ConvBNLayer(num_channels=3, num_filters=32, filter_size=3, stride=2, act='relu', name="conv1_1")
self.conv1_2 = ConvBNLayer(num_channels=32, num_filters=32, filter_size=3, stride=1, act='relu', name="conv1_2")
self.conv1_3 = ConvBNLayer(num_channels=32, num_filters=64, filter_size=3, stride=1, act='relu', name="conv1_3")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(num_channels=num_channels[block] if i == 0 else num_filters[block] *
int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
if load_checkpoint is not None:
model_dict = paddle.load(load_checkpoint)[0]
self.set_dict(model_dict)
print("load custom checkpoint success")
else:
checkpoint = os.path.join(self.directory, 'resnext50_vd_64x4d_imagenet.pdparams')
if not os.path.exists(checkpoint):
os.system(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext50_vd_64x4d_imagenet.pdparams -O '
+ checkpoint)
model_dict = paddle.load(checkpoint)[0]
self.set_dict(model_dict)
print("load pretrained checkpoint success")
def forward(self, inputs: paddle.Tensor):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册