Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
93f50bee
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 2 年 前同步成功
通知
285
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
You need to sign in or sign up before continuing.
未验证
提交
93f50bee
编写于
10月 21, 2020
作者:
H
haoyuying
提交者:
GitHub
10月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add resnext series
上级
38157d2d
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
2406 addition
and
0 deletion
+2406
-0
hub_module/modules/image/classification/resnext101_32x4d_imagenet/module.py
.../image/classification/resnext101_32x4d_imagenet/module.py
+193
-0
hub_module/modules/image/classification/resnext101_64x4d_imagenet/module.py
.../image/classification/resnext101_64x4d_imagenet/module.py
+193
-0
hub_module/modules/image/classification/resnext101_vd_32x4d_imagenet/module.py
...age/classification/resnext101_vd_32x4d_imagenet/module.py
+212
-0
hub_module/modules/image/classification/resnext101_vd_64x4d_imagenet/module.py
...age/classification/resnext101_vd_64x4d_imagenet/module.py
+212
-0
hub_module/modules/image/classification/resnext152_32x4d_imagenet/module.py
.../image/classification/resnext152_32x4d_imagenet/module.py
+193
-0
hub_module/modules/image/classification/resnext152_64x4d_imagenet/module.py
.../image/classification/resnext152_64x4d_imagenet/module.py
+193
-0
hub_module/modules/image/classification/resnext152_vd_32x4d_imagenet/module.py
...age/classification/resnext152_vd_32x4d_imagenet/module.py
+212
-0
hub_module/modules/image/classification/resnext152_vd_64x4d_imagenet/module.py
...age/classification/resnext152_vd_64x4d_imagenet/module.py
+212
-0
hub_module/modules/image/classification/resnext50_32x4d_imagenet/module.py
...s/image/classification/resnext50_32x4d_imagenet/module.py
+187
-0
hub_module/modules/image/classification/resnext50_64x4d_imagenet/module.py
...s/image/classification/resnext50_64x4d_imagenet/module.py
+187
-0
hub_module/modules/image/classification/resnext50_vd_32x4d_imagenet/module.py
...mage/classification/resnext50_vd_32x4d_imagenet/module.py
+206
-0
hub_module/modules/image/classification/resnext50_vd_64x4d_imagenet/module.py
...mage/classification/resnext50_vd_64x4d_imagenet/module.py
+206
-0
未找到文件。
hub_module/modules/image/classification/resnext101_32x4d_imagenet/module.py
0 → 100644
浏览文件 @
93f50bee
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
act
:
str
=
None
,
name
:
str
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNeXt101."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
cardinality
:
int
,
shortcut
:
bool
=
True
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
stride
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnext101_32x4d_imagenet"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnext101_32x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNeXt101_32x4d
(
nn
.
Layer
):
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNeXt101_32x4d
,
self
).
__init__
()
self
.
layers
=
101
self
.
cardinality
=
32
depth
=
[
3
,
4
,
23
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
,
name
=
"res_conv1"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
if
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnext101_32x4d_imagenet.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext101_32x4d_imagenet.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnext101_64x4d_imagenet/module.py
0 → 100644
浏览文件 @
93f50bee
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
act
:
str
=
None
,
name
:
str
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNeXt101."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
cardinality
:
int
,
shortcut
:
bool
=
True
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
stride
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnext101_64x4d_imagenet"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnext101_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNeXt101_64x4d
(
nn
.
Layer
):
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNeXt101_64x4d
,
self
).
__init__
()
self
.
layers
=
101
self
.
cardinality
=
64
depth
=
[
3
,
4
,
23
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
256
,
512
,
1024
,
2048
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
,
name
=
"res_conv1"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
if
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnext101_64x4d_imagenet.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext101_64x4d_imagenet.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnext101_vd_32x4d_imagenet/module.py
0 → 100644
浏览文件 @
93f50bee
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
is_vd_mode
:
bool
=
False
,
act
:
str
=
None
,
name
:
str
=
None
,
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
if
self
.
is_vd_mode
:
inputs
=
self
.
_pool2d_avg
(
inputs
)
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNeXt50_vd."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
cardinality
:
int
,
shortcut
:
bool
=
True
,
if_first
:
bool
=
False
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnext101_vd_32x4d_imagenet"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnext101_vd_32x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNeXt101_vd
(
nn
.
Layer
):
"""ResNeXt101_vd model."""
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNeXt101_vd
,
self
).
__init__
()
self
.
layers
=
101
self
.
cardinality
=
32
depth
=
[
3
,
4
,
23
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1_1"
)
self
.
conv1_2
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_2"
)
self
.
conv1_3
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_3"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
if
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnext101_vd_32x4d_imagenet.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext101_vd_32x4d_imagenet.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv1_1
(
inputs
)
y
=
self
.
conv1_2
(
y
)
y
=
self
.
conv1_3
(
y
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnext101_vd_64x4d_imagenet/module.py
0 → 100644
浏览文件 @
93f50bee
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
is_vd_mode
:
bool
=
False
,
act
:
str
=
None
,
name
:
str
=
None
,
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
if
self
.
is_vd_mode
:
inputs
=
self
.
_pool2d_avg
(
inputs
)
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNeXt50_vd."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
cardinality
:
int
,
shortcut
:
bool
=
True
,
if_first
:
bool
=
False
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnext101_vd_64x4d_imagenet"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnext101_vd_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNeXt101_vd
(
nn
.
Layer
):
"""ResNeXt101_vd model."""
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNeXt101_vd
,
self
).
__init__
()
self
.
layers
=
101
self
.
cardinality
=
64
depth
=
[
3
,
4
,
23
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
256
,
512
,
1024
,
2048
]
self
.
conv1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1_1"
)
self
.
conv1_2
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_2"
)
self
.
conv1_3
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_3"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
if
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnext101_vd_64x4d_imagenet.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext101_vd_64x4d_imagenet.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv1_1
(
inputs
)
y
=
self
.
conv1_2
(
y
)
y
=
self
.
conv1_3
(
y
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnext152_32x4d_imagenet/module.py
0 → 100644
浏览文件 @
93f50bee
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
act
:
str
=
None
,
name
:
str
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNeXt152."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
cardinality
:
int
,
shortcut
:
bool
=
True
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
stride
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnext152_32x4d_imagenet"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnext152_32x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNeXt152_32x4d
(
nn
.
Layer
):
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNeXt152_32x4d
,
self
).
__init__
()
self
.
layers
=
152
self
.
cardinality
=
32
depth
=
[
3
,
8
,
36
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
,
name
=
"res_conv1"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
if
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnext152_32x4d_imagenet.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext152_32x4d_imagenet.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnext152_64x4d_imagenet/module.py
0 → 100644
浏览文件 @
93f50bee
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
act
:
str
=
None
,
name
:
str
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNeXt152."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
cardinality
:
int
,
shortcut
:
bool
=
True
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
stride
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnext152_64x4d_imagenet"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnext152_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNeXt152_64x4d
(
nn
.
Layer
):
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNeXt152_64x4d
,
self
).
__init__
()
self
.
layers
=
152
self
.
cardinality
=
64
depth
=
[
3
,
8
,
36
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
256
,
512
,
1024
,
2048
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
,
name
=
"res_conv1"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
if
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnext152_64x4d_imagenet.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext152_64x4d_imagenet.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnext152_vd_32x4d_imagenet/module.py
0 → 100644
浏览文件 @
93f50bee
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
is_vd_mode
:
bool
=
False
,
act
:
str
=
None
,
name
:
str
=
None
,
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
if
self
.
is_vd_mode
:
inputs
=
self
.
_pool2d_avg
(
inputs
)
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNeXt152_vd."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
cardinality
:
int
,
shortcut
:
bool
=
True
,
if_first
:
bool
=
False
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnext152_vd_32x4d_imagenet"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnext152_vd_32x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNeXt152_vd
(
nn
.
Layer
):
"""ResNeXt152_vd model."""
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNeXt152_vd
,
self
).
__init__
()
self
.
layers
=
152
self
.
cardinality
=
32
depth
=
[
3
,
8
,
36
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1_1"
)
self
.
conv1_2
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_2"
)
self
.
conv1_3
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_3"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
if
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnext152_vd_32x4d_imagenet.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext152_vd_32x4d_imagenet.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv1_1
(
inputs
)
y
=
self
.
conv1_2
(
y
)
y
=
self
.
conv1_3
(
y
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnext152_vd_64x4d_imagenet/module.py
0 → 100644
浏览文件 @
93f50bee
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
is_vd_mode
:
bool
=
False
,
act
:
str
=
None
,
name
:
str
=
None
,
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
if
self
.
is_vd_mode
:
inputs
=
self
.
_pool2d_avg
(
inputs
)
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNeXt152_vd."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
cardinality
:
int
,
shortcut
:
bool
=
True
,
if_first
:
bool
=
False
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnext152_vd_64x4d_imagenet"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnext152_vd_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNeXt152_vd
(
nn
.
Layer
):
"""ResNeXt152_vd model."""
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNeXt152_vd
,
self
).
__init__
()
self
.
layers
=
152
self
.
cardinality
=
64
depth
=
[
3
,
8
,
36
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
256
,
512
,
1024
,
2048
]
self
.
conv1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1_1"
)
self
.
conv1_2
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_2"
)
self
.
conv1_3
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_3"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
if
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnext152_vd_64x4d_imagenet.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext152_vd_64x4d_imagenet.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv1_1
(
inputs
)
y
=
self
.
conv1_2
(
y
)
y
=
self
.
conv1_3
(
y
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnext50_32x4d_imagenet/module.py
0 → 100644
浏览文件 @
93f50bee
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
act
:
str
=
None
,
name
:
str
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNeXt50."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
cardinality
:
int
,
shortcut
:
bool
=
True
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
stride
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnext50_32x4d_imagenet"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnext50_32x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNeXt50_32x4d
(
nn
.
Layer
):
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNeXt50_32x4d
,
self
).
__init__
()
self
.
layers
=
50
self
.
cardinality
=
32
depth
=
[
3
,
4
,
6
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
,
name
=
"res_conv1"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnext50_32x4d_imagenet.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext50_32x4d_imagenet.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnext50_64x4d_imagenet/module.py
0 → 100644
浏览文件 @
93f50bee
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
act
:
str
=
None
,
name
:
str
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNeXt50."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
cardinality
:
int
,
shortcut
:
bool
=
True
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
stride
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnext50_64x4d_imagenet"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnext50_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNeXt50_64x4d
(
nn
.
Layer
):
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNeXt50_64x4d
,
self
).
__init__
()
self
.
layers
=
50
self
.
cardinality
=
64
depth
=
[
3
,
4
,
6
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
256
,
512
,
1024
,
2048
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
,
name
=
"res_conv1"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnext50_64x4d_imagenet.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext50_64x4d_imagenet.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnext50_vd_32x4d_imagenet/module.py
0 → 100644
浏览文件 @
93f50bee
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
is_vd_mode
:
bool
=
False
,
act
:
str
=
None
,
name
:
str
=
None
,
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
if
self
.
is_vd_mode
:
inputs
=
self
.
_pool2d_avg
(
inputs
)
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNeXt50_vd."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
cardinality
:
int
,
shortcut
:
bool
=
True
,
if_first
:
bool
=
False
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnext50_vd_32x4d_imagenet"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnext50_vd_32x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNeXt50_vd
(
nn
.
Layer
):
"""ResNeXt50_vd model."""
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNeXt50_vd
,
self
).
__init__
()
self
.
layers
=
50
self
.
cardinality
=
32
depth
=
[
3
,
4
,
6
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1_1"
)
self
.
conv1_2
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_2"
)
self
.
conv1_3
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_3"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnext50_vd_32x4d_imagenet.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext50_vd_32x4d_imagenet.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv1_1
(
inputs
)
y
=
self
.
conv1_2
(
y
)
y
=
self
.
conv1_3
(
y
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnext50_vd_64x4d_imagenet/module.py
0 → 100644
浏览文件 @
93f50bee
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
os
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
is_vd_mode
:
bool
=
False
,
act
:
str
=
None
,
name
:
str
=
None
,
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
if
self
.
is_vd_mode
:
inputs
=
self
.
_pool2d_avg
(
inputs
)
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNeXt50_vd."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
cardinality
:
int
,
shortcut
:
bool
=
True
,
if_first
:
bool
=
False
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnext50_vd_64x4d_imagenet"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnext50_vd_64x4d_imagenet is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNeXt50_vd
(
nn
.
Layer
):
"""ResNeXt50_vd model."""
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNeXt50_vd
,
self
).
__init__
()
self
.
layers
=
50
self
.
cardinality
=
64
depth
=
[
3
,
4
,
6
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
256
,
512
,
1024
,
2048
]
self
.
conv1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1_1"
)
self
.
conv1_2
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_2"
)
self
.
conv1_3
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_3"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnext50_vd_64x4d_imagenet.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext50_vd_64x4d_imagenet.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv1_1
(
inputs
)
y
=
self
.
conv1_2
(
y
)
y
=
self
.
conv1_3
(
y
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录