module.py 7.7 KB
Newer Older
H
haoyuying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import os

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule


class ConvBNLayer(nn.Layer):
    """Basic conv bn layer."""
W
wuzewu 已提交
31

H
haoyuying 已提交
32
    def __init__(
W
wuzewu 已提交
33 34 35 36 37 38 39 40 41
            self,
            num_channels: int,
            num_filters: int,
            filter_size: int,
            stride: int = 1,
            groups: int = 1,
            is_vd_mode: bool = False,
            act: str = None,
            name: str = None,
H
haoyuying 已提交
42 43 44 45 46
    ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = AvgPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
W
wuzewu 已提交
47 48 49 50 51 52 53 54 55
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
H
haoyuying 已提交
56 57 58 59
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
W
wuzewu 已提交
60 61 62 63 64 65 66
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
H
haoyuying 已提交
67 68 69 70 71 72 73 74 75 76 77

    def forward(self, inputs: paddle.Tensor):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class BottleneckBlock(nn.Layer):
    """Bottleneck Block for ResNeXt50_vd."""
W
wuzewu 已提交
78

H
haoyuying 已提交
79 80 81 82 83 84 85 86 87 88
    def __init__(self,
                 num_channels: int,
                 num_filters: int,
                 stride: int,
                 cardinality: int,
                 shortcut: bool = True,
                 if_first: bool = False,
                 name: str = None):
        super(BottleneckBlock, self).__init__()

W
wuzewu 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        self.conv0 = ConvBNLayer(
            num_channels=num_channels, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            groups=cardinality,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 2 if cardinality == 32 else num_filters,
            filter_size=1,
            act=None,
            name=name + "_branch2c")
H
haoyuying 已提交
105 106

        if not shortcut:
W
wuzewu 已提交
107 108 109 110 111 112 113
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 2 if cardinality == 32 else num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")
H
haoyuying 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

        self.shortcut = shortcut

    def forward(self, inputs: paddle.Tensor):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = paddle.elementwise_add(x=short, y=conv2, act='relu')
        return y


W
wuzewu 已提交
131 132 133 134 135 136 137 138 139
@moduleinfo(
    name="resnext101_vd_64x4d_imagenet",
    type="CV/classification",
    author="paddlepaddle",
    author_email="",
    summary="resnext101_vd_64x4d_imagenet is a classification model, "
    "this module is trained with Baidu open sourced dataset.",
    version="1.1.0",
    meta=ImageClassifierModule)
H
haoyuying 已提交
140 141
class ResNeXt101_vd(nn.Layer):
    """ResNeXt101_vd model."""
W
wuzewu 已提交
142

H
haoyuying 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
        super(ResNeXt101_vd, self).__init__()

        self.layers = 101
        self.cardinality = 64
        depth = [3, 4, 23, 3]
        num_channels = [64, 256, 512, 1024]
        num_filters = [256, 512, 1024, 2048]

        self.conv1_1 = ConvBNLayer(num_channels=3, num_filters=32, filter_size=3, stride=2, act='relu', name="conv1_1")
        self.conv1_2 = ConvBNLayer(num_channels=32, num_filters=32, filter_size=3, stride=1, act='relu', name="conv1_2")
        self.conv1_3 = ConvBNLayer(num_channels=32, num_filters=64, filter_size=3, stride=1, act='relu', name="conv1_3")

        self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.block_list = []
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                if block == 2:
                    if i == 0:
                        conv_name = "res" + str(block + 2) + "a"
                    else:
                        conv_name = "res" + str(block + 2) + "b" + str(i)
                else:
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
W
wuzewu 已提交
171 172 173 174 175 176 177 178 179
                    BottleneckBlock(
                        num_channels=num_channels[block]
                        if i == 0 else num_filters[block] * int(64 // self.cardinality),
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        cardinality=self.cardinality,
                        shortcut=shortcut,
                        if_first=block == i == 0,
                        name=conv_name))
H
haoyuying 已提交
180 181 182 183 184 185 186 187 188
                self.block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = AdaptiveAvgPool2d(1)

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

W
wuzewu 已提交
189 190 191 192 193
        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))
H
haoyuying 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

        if load_checkpoint is not None:
            model_dict = paddle.load(load_checkpoint)[0]
            self.set_dict(model_dict)
            print("load custom checkpoint success")

        else:
            checkpoint = os.path.join(self.directory, 'resnext101_vd_64x4d_imagenet.pdparams')
            if not os.path.exists(checkpoint):
                os.system(
                    'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnext101_vd_64x4d_imagenet.pdparams -O '
                    + checkpoint)
            model_dict = paddle.load(checkpoint)[0]
            self.set_dict(model_dict)
            print("load pretrained checkpoint success")

    def forward(self, inputs: paddle.Tensor):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y