starganv2_model.py 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
from paddle.fluid.layers.nn import soft_relu
from .base_model import BaseModel

from paddle import nn
import paddle
import paddle.nn.functional as F
from .builder import MODELS
from .generators.builder import build_generator
from .discriminators.builder import build_discriminator
from ..modules.init import kaiming_normal_, constant_
from ppgan.utils.visual import make_grid, tensor2img

import numpy as np


def translate_using_reference(nets, w_hpf, x_src, x_ref, y_ref):
    N, C, H, W = x_src.shape
    wb = paddle.to_tensor(np.ones((1, C, H, W))).astype('float32')
    x_src_with_wb = paddle.concat([wb, x_src], axis=0)

    masks = nets['fan'].get_heatmap(x_src) if w_hpf > 0 else None
    s_ref = nets['style_encoder'](x_ref, y_ref)
    s_ref_list = paddle.unsqueeze(s_ref, axis=[1])
    s_ref_lists = []
    for _ in range(N):
        s_ref_lists.append(s_ref_list)
    s_ref_list = paddle.stack(s_ref_lists, axis=1)
28 29 30
    s_ref_list = paddle.reshape(
        s_ref_list,
        (s_ref_list.shape[0], s_ref_list.shape[1], s_ref_list.shape[3]))
31 32 33
    x_concat = [x_src_with_wb]
    for i, s_ref in enumerate(s_ref_list):
        x_fake = nets['generator'](x_src, s_ref, masks=masks)
34
        x_fake_with_ref = paddle.concat([x_ref[i:i + 1], x_fake], axis=0)
35 36 37
        x_concat += [x_fake_with_ref]

    x_concat = paddle.concat(x_concat, axis=0)
38
    img = tensor2img(make_grid(x_concat, nrow=N + 1, range=(0, 1)))
39 40 41 42
    del x_concat
    return img


43 44 45 46 47 48 49 50
def compute_d_loss(nets,
                   lambda_reg,
                   x_real,
                   y_org,
                   y_trg,
                   z_trg=None,
                   x_ref=None,
                   masks=None):
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    assert (z_trg is None) != (x_ref is None)
    # with real images
    x_real.stop_gradient = False
    out = nets['discriminator'](x_real, y_org)
    loss_real = adv_loss(out, 1)
    loss_reg = r1_reg(out, x_real)

    # with fake images
    with paddle.no_grad():
        if z_trg is not None:
            s_trg = nets['mapping_network'](z_trg, y_trg)
        else:  # x_ref is not None
            s_trg = nets['style_encoder'](x_ref, y_trg)

        x_fake = nets['generator'](x_real, s_trg, masks=masks)
    out = nets['discriminator'](x_fake, y_trg)
    loss_fake = adv_loss(out, 0)

    loss = loss_real + loss_fake + lambda_reg * loss_reg
70 71 72 73 74
    return loss, {
        'real': loss_real.numpy(),
        'fake': loss_fake.numpy(),
        'reg': loss_reg.numpy()
    }
75 76 77 78 79 80 81 82 83 84 85 86


def adv_loss(logits, target):
    assert target in [1, 0]
    targets = paddle.full_like(logits, fill_value=target)
    loss = F.binary_cross_entropy_with_logits(logits, targets)
    return loss


def r1_reg(d_out, x_in):
    # zero-centered gradient penalty for real images
    batch_size = x_in.shape[0]
87 88 89 90 91
    grad_dout = paddle.grad(outputs=d_out.sum(),
                            inputs=x_in,
                            create_graph=True,
                            retain_graph=True,
                            only_inputs=True)[0]
92
    grad_dout2 = grad_dout.pow(2)
93
    assert (grad_dout2.shape == x_in.shape)
94 95 96
    reg = 0.5 * paddle.reshape(grad_dout2, (batch_size, -1)).sum(1).mean(0)
    return reg

97

98 99
def soft_update(source, target, beta=1.0):
    assert 0.0 <= beta <= 1.0
100 101 102 103

    if isinstance(source, paddle.DataParallel):
        source = source._layers

104 105 106
    target_model_map = dict(target.named_parameters())
    for param_name, source_param in source.named_parameters():
        target_param = target_model_map[param_name]
107 108 109
        target_param.set_value(beta * source_param +
                               (1.0 - beta) * target_param)

110 111 112 113 114 115 116 117 118

def dump_model(model):
    params = {}
    for k in model.state_dict().keys():
        if k.endswith('.scale'):
            params[k] = model.state_dict()[k].shape
    return params


119 120 121 122 123 124 125 126 127 128 129
def compute_g_loss(nets,
                   w_hpf,
                   lambda_sty,
                   lambda_ds,
                   lambda_cyc,
                   x_real,
                   y_org,
                   y_trg,
                   z_trgs=None,
                   x_refs=None,
                   masks=None):
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    assert (z_trgs is None) != (x_refs is None)
    if z_trgs is not None:
        z_trg, z_trg2 = z_trgs
    if x_refs is not None:
        x_ref, x_ref2 = x_refs

    # adversarial loss
    if z_trgs is not None:
        s_trg = nets['mapping_network'](z_trg, y_trg)
    else:
        s_trg = nets['style_encoder'](x_ref, y_trg)

    x_fake = nets['generator'](x_real, s_trg, masks=masks)
    out = nets['discriminator'](x_fake, y_trg)
    loss_adv = adv_loss(out, 1)

    # style reconstruction loss
    s_pred = nets['style_encoder'](x_fake, y_trg)
    loss_sty = paddle.mean(paddle.abs(s_pred - s_trg))

    # diversity sensitive loss
    if z_trgs is not None:
        s_trg2 = nets['mapping_network'](z_trg2, y_trg)
    else:
        s_trg2 = nets['style_encoder'](x_ref2, y_trg)
    x_fake2 = nets['generator'](x_real, s_trg2, masks=masks)
    loss_ds = paddle.mean(paddle.abs(x_fake - x_fake2))

    # cycle-consistency loss
159 160 161 162 163
    if isinstance(nets['fan'], paddle.DataParallel):
        masks = nets['fan']._layers.get_heatmap(x_fake) if w_hpf > 0 else None
    else:
        masks = nets['fan'].get_heatmap(x_fake) if w_hpf > 0 else None

164 165 166 167 168 169
    s_org = nets['style_encoder'](x_real, y_org)
    x_rec = nets['generator'](x_fake, s_org, masks=masks)
    loss_cyc = paddle.mean(paddle.abs(x_rec - x_real))

    loss = loss_adv + lambda_sty * loss_sty \
        - lambda_ds * loss_ds + lambda_cyc * loss_cyc
170 171 172 173 174 175
    return loss, {
        'adv': loss_adv.numpy(),
        'sty': loss_sty.numpy(),
        'ds:': loss_ds.numpy(),
        'cyc': loss_cyc.numpy()
    }
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191


def he_init(module):
    if isinstance(module, nn.Conv2D):
        kaiming_normal_(module.weight, mode='fan_in', nonlinearity='relu')
        if module.bias is not None:
            constant_(module.bias, 0)
    if isinstance(module, nn.Linear):
        kaiming_normal_(module.weight, mode='fan_in', nonlinearity='relu')
        if module.bias is not None:
            constant_(module.bias, 0)


@MODELS.register()
class StarGANv2Model(BaseModel):
    def __init__(
192
        self,
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        generator,
        style=None,
        mapping=None,
        discriminator=None,
        fan=None,
        latent_dim=16,
        lambda_reg=1,
        lambda_sty=1,
        lambda_ds=1,
        lambda_cyc=1,
    ):
        super(StarGANv2Model, self).__init__()
        self.w_hpf = generator['w_hpf']
        self.nets_ema = {}
        self.nets['generator'] = build_generator(generator)
        self.nets_ema['generator'] = build_generator(generator)
        self.nets['style_encoder'] = build_generator(style)
        self.nets_ema['style_encoder'] = build_generator(style)
        self.nets['mapping_network'] = build_generator(mapping)
        self.nets_ema['mapping_network'] = build_generator(mapping)
        if discriminator:
            self.nets['discriminator'] = build_discriminator(discriminator)
        if self.w_hpf > 0:
            fan_model = build_generator(fan)
            fan_model.eval()
            self.nets['fan'] = fan_model
            self.nets_ema['fan'] = fan_model
        self.latent_dim = latent_dim
        self.lambda_reg = lambda_reg
        self.lambda_sty = lambda_sty
        self.lambda_ds = lambda_ds
        self.lambda_cyc = lambda_cyc

        self.nets['generator'].apply(he_init)
        self.nets['style_encoder'].apply(he_init)
        self.nets['mapping_network'].apply(he_init)
        self.nets['discriminator'].apply(he_init)

        # remember the initial value of ds weight
        self.initial_lambda_ds = self.lambda_ds
233

234 235 236 237 238 239 240 241 242 243
    def setup_input(self, input):
        """Unpack input data from the dataloader and perform necessary pre-processing steps.

        Args:
            input (dict): include the data itself and its metadata information.

        The option 'direction' can be used to swap images in domain A and domain B.
        """
        pass
        self.input = input
244 245 246 247
        self.input['z_trg'] = paddle.randn(
            (input['src'].shape[0], self.latent_dim))
        self.input['z_trg2'] = paddle.randn(
            (input['src'].shape[0], self.latent_dim))
248 249 250 251 252 253 254 255 256 257 258 259

    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
        pass

    def _reset_grad(self, optims):
        for optim in optims.values():
            optim.clear_gradients()

    def train_iter(self, optimizers=None):
        #TODO
        x_real, y_org = self.input['src'], self.input['src_cls']
260 261
        x_ref, x_ref2, y_trg = self.input['ref'], self.input[
            'ref2'], self.input['ref_cls']
262 263
        z_trg, z_trg2 = self.input['z_trg'], self.input['z_trg2']

264 265 266 267 268 269
        if isinstance(self.nets['fan'], paddle.DataParallel):
            masks = self.nets['fan']._layers.get_heatmap(
                x_real) if self.w_hpf > 0 else None
        else:
            masks = self.nets['fan'].get_heatmap(
                x_real) if self.w_hpf > 0 else None
270 271

        # train the discriminator
272 273 274 275 276 277 278
        d_loss, d_losses_latent = compute_d_loss(self.nets,
                                                 self.lambda_reg,
                                                 x_real,
                                                 y_org,
                                                 y_trg,
                                                 z_trg=z_trg,
                                                 masks=masks)
279 280 281 282
        self._reset_grad(optimizers)
        d_loss.backward()
        optimizers['discriminator'].minimize(d_loss)

283 284 285 286 287 288 289
        d_loss, d_losses_ref = compute_d_loss(self.nets,
                                              self.lambda_reg,
                                              x_real,
                                              y_org,
                                              y_trg,
                                              x_ref=x_ref,
                                              masks=masks)
290 291 292 293 294
        self._reset_grad(optimizers)
        d_loss.backward()
        optimizers['discriminator'].step()

        # train the generator
295 296 297 298 299 300 301 302 303 304
        g_loss, g_losses_latent = compute_g_loss(self.nets,
                                                 self.w_hpf,
                                                 self.lambda_sty,
                                                 self.lambda_ds,
                                                 self.lambda_cyc,
                                                 x_real,
                                                 y_org,
                                                 y_trg,
                                                 z_trgs=[z_trg, z_trg2],
                                                 masks=masks)
305 306 307 308 309 310
        self._reset_grad(optimizers)
        g_loss.backward()
        optimizers['generator'].step()
        optimizers['mapping_network'].step()
        optimizers['style_encoder'].step()

311 312 313 314 315 316 317 318 319 320
        g_loss, g_losses_ref = compute_g_loss(self.nets,
                                              self.w_hpf,
                                              self.lambda_sty,
                                              self.lambda_ds,
                                              self.lambda_cyc,
                                              x_real,
                                              y_org,
                                              y_trg,
                                              x_refs=[x_ref, x_ref2],
                                              masks=masks)
321 322 323 324 325
        self._reset_grad(optimizers)
        g_loss.backward()
        optimizers['generator'].step()

        # compute moving average of network parameters
326 327 328 329 330 331 332 333 334
        soft_update(self.nets['generator'],
                    self.nets_ema['generator'],
                    beta=0.999)
        soft_update(self.nets['mapping_network'],
                    self.nets_ema['mapping_network'],
                    beta=0.999)
        soft_update(self.nets['style_encoder'],
                    self.nets_ema['style_encoder'],
                    beta=0.999)
335 336 337 338 339

        # decay weight for diversity sensitive loss
        if self.lambda_ds > 0:
            self.lambda_ds -= (self.initial_lambda_ds / self.total_iter)

340 341 342
        for loss, prefix in zip(
            [d_losses_latent, d_losses_ref, g_losses_latent, g_losses_ref],
            ['D/latent_', 'D/ref_', 'G/latent_', 'G/ref_']):
343 344 345 346 347 348 349 350 351
            for key, value in loss.items():
                self.losses[prefix + key] = value
        self.losses['G/lambda_ds'] = self.lambda_ds
        self.losses['Total iter'] = int(self.total_iter)

    def test_iter(self, metrics=None):
        #TODO
        self.nets_ema['generator'].eval()
        self.nets_ema['style_encoder'].eval()
352 353 354 355 356 357 358 359 360
        soft_update(self.nets['generator'],
                    self.nets_ema['generator'],
                    beta=0.999)
        soft_update(self.nets['mapping_network'],
                    self.nets_ema['mapping_network'],
                    beta=0.999)
        soft_update(self.nets['style_encoder'],
                    self.nets_ema['style_encoder'],
                    beta=0.999)
361 362 363 364
        src_img = self.input['src']
        ref_img = self.input['ref']
        ref_label = self.input['ref_cls']
        with paddle.no_grad():
365 366 367 368 369
            img = translate_using_reference(
                self.nets_ema, self.w_hpf,
                paddle.to_tensor(src_img).astype('float32'),
                paddle.to_tensor(ref_img).astype('float32'),
                paddle.to_tensor(ref_label).astype('float32'))
370 371 372
        self.visual_items['reference'] = img
        self.nets_ema['generator'].train()
        self.nets_ema['style_encoder'].train()