starganv2_model.py 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
from paddle.fluid.layers.nn import soft_relu
from .base_model import BaseModel

from paddle import nn
import paddle
import paddle.nn.functional as F
from .builder import MODELS
from .generators.builder import build_generator
from .discriminators.builder import build_discriminator
from ..modules.init import kaiming_normal_, constant_
from ppgan.utils.visual import make_grid, tensor2img

import numpy as np


def translate_using_reference(nets, w_hpf, x_src, x_ref, y_ref):
    N, C, H, W = x_src.shape
    wb = paddle.to_tensor(np.ones((1, C, H, W))).astype('float32')
    x_src_with_wb = paddle.concat([wb, x_src], axis=0)

    masks = nets['fan'].get_heatmap(x_src) if w_hpf > 0 else None
    s_ref = nets['style_encoder'](x_ref, y_ref)
    s_ref_list = paddle.unsqueeze(s_ref, axis=[1])
    s_ref_lists = []
    for _ in range(N):
        s_ref_lists.append(s_ref_list)
    s_ref_list = paddle.stack(s_ref_lists, axis=1)
    s_ref_list = paddle.reshape(s_ref_list, (s_ref_list.shape[0], s_ref_list.shape[1], s_ref_list.shape[3]))
    x_concat = [x_src_with_wb]
    for i, s_ref in enumerate(s_ref_list):
        x_fake = nets['generator'](x_src, s_ref, masks=masks)
        x_fake_with_ref = paddle.concat([x_ref[i:i+1], x_fake], axis=0)
        x_concat += [x_fake_with_ref]

    x_concat = paddle.concat(x_concat, axis=0)
    img = tensor2img(make_grid(x_concat, nrow=N+1, range=(0, 1)))
    del x_concat
    return img


def compute_d_loss(nets, lambda_reg, x_real, y_org, y_trg, z_trg=None, x_ref=None, masks=None):
    assert (z_trg is None) != (x_ref is None)
    # with real images
    x_real.stop_gradient = False
    out = nets['discriminator'](x_real, y_org)
    loss_real = adv_loss(out, 1)
    loss_reg = r1_reg(out, x_real)

    # with fake images
    with paddle.no_grad():
        if z_trg is not None:
            s_trg = nets['mapping_network'](z_trg, y_trg)
        else:  # x_ref is not None
            s_trg = nets['style_encoder'](x_ref, y_trg)

        x_fake = nets['generator'](x_real, s_trg, masks=masks)
    out = nets['discriminator'](x_fake, y_trg)
    loss_fake = adv_loss(out, 0)

    loss = loss_real + loss_fake + lambda_reg * loss_reg
    return loss, {'real': loss_real.numpy(),
                       'fake': loss_fake.numpy(),
                       'reg': loss_reg.numpy()}


def adv_loss(logits, target):
    assert target in [1, 0]
    targets = paddle.full_like(logits, fill_value=target)
    loss = F.binary_cross_entropy_with_logits(logits, targets)
    return loss


def r1_reg(d_out, x_in):
    # zero-centered gradient penalty for real images
    batch_size = x_in.shape[0]
    grad_dout = paddle.grad(
        outputs=d_out.sum(), inputs=x_in,
        create_graph=True, retain_graph=True, only_inputs=True
    )[0]
    grad_dout2 = grad_dout.pow(2)
    assert(grad_dout2.shape == x_in.shape)
    reg = 0.5 * paddle.reshape(grad_dout2, (batch_size, -1)).sum(1).mean(0)
    return reg

def soft_update(source, target, beta=1.0):
    assert 0.0 <= beta <= 1.0
    target_model_map = dict(target.named_parameters())
    for param_name, source_param in source.named_parameters():
        target_param = target_model_map[param_name]
        target_param.set_value(beta * source_param + (1.0 - beta) * target_param)

def dump_model(model):
    params = {}
    for k in model.state_dict().keys():
        if k.endswith('.scale'):
            params[k] = model.state_dict()[k].shape
    return params


def compute_g_loss(nets, w_hpf, lambda_sty, lambda_ds, lambda_cyc, x_real, y_org, y_trg, z_trgs=None, x_refs=None, masks=None):
    assert (z_trgs is None) != (x_refs is None)
    if z_trgs is not None:
        z_trg, z_trg2 = z_trgs
    if x_refs is not None:
        x_ref, x_ref2 = x_refs

    # adversarial loss
    if z_trgs is not None:
        s_trg = nets['mapping_network'](z_trg, y_trg)
    else:
        s_trg = nets['style_encoder'](x_ref, y_trg)

    x_fake = nets['generator'](x_real, s_trg, masks=masks)
    out = nets['discriminator'](x_fake, y_trg)
    loss_adv = adv_loss(out, 1)

    # style reconstruction loss
    s_pred = nets['style_encoder'](x_fake, y_trg)
    loss_sty = paddle.mean(paddle.abs(s_pred - s_trg))

    # diversity sensitive loss
    if z_trgs is not None:
        s_trg2 = nets['mapping_network'](z_trg2, y_trg)
    else:
        s_trg2 = nets['style_encoder'](x_ref2, y_trg)
    x_fake2 = nets['generator'](x_real, s_trg2, masks=masks)
    loss_ds = paddle.mean(paddle.abs(x_fake - x_fake2))

    # cycle-consistency loss
    masks = nets['fan'].get_heatmap(x_fake) if w_hpf > 0 else None
    s_org = nets['style_encoder'](x_real, y_org)
    x_rec = nets['generator'](x_fake, s_org, masks=masks)
    loss_cyc = paddle.mean(paddle.abs(x_rec - x_real))

    loss = loss_adv + lambda_sty * loss_sty \
        - lambda_ds * loss_ds + lambda_cyc * loss_cyc
    return loss, {'adv': loss_adv.numpy(),
                    'sty': loss_sty.numpy(),
                    'ds:': loss_ds.numpy(),
                    'cyc': loss_cyc.numpy()}


def he_init(module):
    if isinstance(module, nn.Conv2D):
        kaiming_normal_(module.weight, mode='fan_in', nonlinearity='relu')
        if module.bias is not None:
            constant_(module.bias, 0)
    if isinstance(module, nn.Linear):
        kaiming_normal_(module.weight, mode='fan_in', nonlinearity='relu')
        if module.bias is not None:
            constant_(module.bias, 0)


@MODELS.register()
class StarGANv2Model(BaseModel):
    def __init__(
        self, 
        generator,
        style=None,
        mapping=None,
        discriminator=None,
        fan=None,
        latent_dim=16,
        lambda_reg=1,
        lambda_sty=1,
        lambda_ds=1,
        lambda_cyc=1,
    ):
        super(StarGANv2Model, self).__init__()
        self.w_hpf = generator['w_hpf']
        self.nets_ema = {}
        self.nets['generator'] = build_generator(generator)
        self.nets_ema['generator'] = build_generator(generator)
        self.nets['style_encoder'] = build_generator(style)
        self.nets_ema['style_encoder'] = build_generator(style)
        self.nets['mapping_network'] = build_generator(mapping)
        self.nets_ema['mapping_network'] = build_generator(mapping)
        if discriminator:
            self.nets['discriminator'] = build_discriminator(discriminator)
        if self.w_hpf > 0:
            fan_model = build_generator(fan)
            fan_model.eval()
            self.nets['fan'] = fan_model
            self.nets_ema['fan'] = fan_model
        self.latent_dim = latent_dim
        self.lambda_reg = lambda_reg
        self.lambda_sty = lambda_sty
        self.lambda_ds = lambda_ds
        self.lambda_cyc = lambda_cyc

        self.nets['generator'].apply(he_init)
        self.nets['style_encoder'].apply(he_init)
        self.nets['mapping_network'].apply(he_init)
        self.nets['discriminator'].apply(he_init)

        # remember the initial value of ds weight
        self.initial_lambda_ds = self.lambda_ds
        
    def setup_input(self, input):
        """Unpack input data from the dataloader and perform necessary pre-processing steps.

        Args:
            input (dict): include the data itself and its metadata information.

        The option 'direction' can be used to swap images in domain A and domain B.
        """
        pass
        self.input = input
        self.input['z_trg'] = paddle.randn((input['src'].shape[0], self.latent_dim))
        self.input['z_trg2'] = paddle.randn((input['src'].shape[0], self.latent_dim))

    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
        pass

    def _reset_grad(self, optims):
        for optim in optims.values():
            optim.clear_gradients()

    def train_iter(self, optimizers=None):
        #TODO
        x_real, y_org = self.input['src'], self.input['src_cls']
        x_ref, x_ref2, y_trg = self.input['ref'], self.input['ref2'], self.input['ref_cls']
        z_trg, z_trg2 = self.input['z_trg'], self.input['z_trg2']

        masks = self.nets['fan'].get_heatmap(x_real) if self.w_hpf > 0 else None

        # train the discriminator
        d_loss, d_losses_latent = compute_d_loss(
            self.nets, self.lambda_reg, x_real, y_org, y_trg, z_trg=z_trg, masks=masks)
        self._reset_grad(optimizers)
        d_loss.backward()
        optimizers['discriminator'].minimize(d_loss)

        d_loss, d_losses_ref = compute_d_loss(
            self.nets, self.lambda_reg, x_real, y_org, y_trg, x_ref=x_ref, masks=masks)
        self._reset_grad(optimizers)
        d_loss.backward()
        optimizers['discriminator'].step()

        # train the generator
        g_loss, g_losses_latent = compute_g_loss(
            self.nets, self.w_hpf, self.lambda_sty, self.lambda_ds, self.lambda_cyc, x_real, y_org, y_trg, z_trgs=[z_trg, z_trg2], masks=masks)
        self._reset_grad(optimizers)
        g_loss.backward()
        optimizers['generator'].step()
        optimizers['mapping_network'].step()
        optimizers['style_encoder'].step()

        g_loss, g_losses_ref = compute_g_loss(
            self.nets, self.w_hpf, self.lambda_sty, self.lambda_ds, self.lambda_cyc, x_real, y_org, y_trg, x_refs=[x_ref, x_ref2], masks=masks)
        self._reset_grad(optimizers)
        g_loss.backward()
        optimizers['generator'].step()

        # compute moving average of network parameters
        soft_update(self.nets['generator'], self.nets_ema['generator'], beta=0.999)
        soft_update(self.nets['mapping_network'], self.nets_ema['mapping_network'], beta=0.999)
        soft_update(self.nets['style_encoder'], self.nets_ema['style_encoder'], beta=0.999)

        # decay weight for diversity sensitive loss
        if self.lambda_ds > 0:
            self.lambda_ds -= (self.initial_lambda_ds / self.total_iter)

        for loss, prefix in zip([d_losses_latent, d_losses_ref, g_losses_latent, g_losses_ref],
                                            ['D/latent_', 'D/ref_', 'G/latent_', 'G/ref_']):
            for key, value in loss.items():
                self.losses[prefix + key] = value
        self.losses['G/lambda_ds'] = self.lambda_ds
        self.losses['Total iter'] = int(self.total_iter)

    def test_iter(self, metrics=None):
        #TODO
        self.nets_ema['generator'].eval()
        self.nets_ema['style_encoder'].eval()
        soft_update(self.nets['generator'], self.nets_ema['generator'], beta=0.999)
        soft_update(self.nets['mapping_network'], self.nets_ema['mapping_network'], beta=0.999)
        soft_update(self.nets['style_encoder'], self.nets_ema['style_encoder'], beta=0.999)
        src_img = self.input['src']
        ref_img = self.input['ref']
        ref_label = self.input['ref_cls']
        with paddle.no_grad():
            img = translate_using_reference(self.nets_ema, self.w_hpf,
                                                    paddle.to_tensor(src_img).astype('float32'),
                                                    paddle.to_tensor(ref_img).astype('float32'),
                                                    paddle.to_tensor(ref_label).astype('float32'))
        self.visual_items['reference'] = img
        self.nets_ema['generator'].train()
        self.nets_ema['style_encoder'].train()