pixel2style2pixel_predictor.py 8.2 KB
Newer Older
H
Hecong Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import scipy
import random
import numpy as np
import paddle
import paddle.vision.transforms as T
import ppgan.faceutils as futils
from .base_predictor import BasePredictor
from ppgan.models.generators import Pixel2Style2Pixel
from ppgan.utils.download import get_path_from_url
from PIL import Image

model_cfgs = {
    'ffhq-inversion': {
30 31 32 33
        'model_urls':
        'https://paddlegan.bj.bcebos.com/models/pSp-ffhq-inversion.pdparams',
        'transform':
        T.Compose([
H
Hecong Wu 已提交
34 35 36 37
            T.Resize((256, 256)),
            T.Transpose(),
            T.Normalize([127.5, 127.5, 127.5], [127.5, 127.5, 127.5])
        ]),
38 39 40 41 42 43 44 45
        'size':
        1024,
        'style_dim':
        512,
        'n_mlp':
        8,
        'channel_multiplier':
        2
H
Hecong Wu 已提交
46 47
    },
    'ffhq-toonify': {
48 49 50 51
        'model_urls':
        'https://paddlegan.bj.bcebos.com/models/pSp-ffhq-toonify.pdparams',
        'transform':
        T.Compose([
H
Hecong Wu 已提交
52 53 54 55
            T.Resize((256, 256)),
            T.Transpose(),
            T.Normalize([127.5, 127.5, 127.5], [127.5, 127.5, 127.5])
        ]),
56 57 58 59 60 61 62 63
        'size':
        1024,
        'style_dim':
        512,
        'n_mlp':
        8,
        'channel_multiplier':
        2
H
Hecong Wu 已提交
64 65
    },
    'default': {
66 67
        'transform':
        T.Compose([
H
Hecong Wu 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
            T.Resize((256, 256)),
            T.Transpose(),
            T.Normalize([127.5, 127.5, 127.5], [127.5, 127.5, 127.5])
        ])
    }
}


def run_alignment(image_path):
    img = Image.open(image_path).convert("RGB")
    face = futils.dlib.detect(img)
    if not face:
        raise Exception('Could not find a face in the given image.')
    face_on_image = face[0]
    lm = futils.dlib.landmarks(img, face_on_image)
83 84 85 86
    lm = np.array(lm)[:, ::-1]
    lm_eye_left = lm[36:42]
    lm_eye_right = lm[42:48]
    lm_mouth_outer = lm[48:60]
H
Hecong Wu 已提交
87 88 89 90 91 92

    output_size = 1024
    transform_size = 4096
    enable_padding = True

    # Calculate auxiliary vectors.
93 94 95 96 97 98 99
    eye_left = np.mean(lm_eye_left, axis=0)
    eye_right = np.mean(lm_eye_right, axis=0)
    eye_avg = (eye_left + eye_right) * 0.5
    eye_to_eye = eye_right - eye_left
    mouth_left = lm_mouth_outer[0]
    mouth_right = lm_mouth_outer[6]
    mouth_avg = (mouth_left + mouth_right) * 0.5
H
Hecong Wu 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113
    eye_to_mouth = mouth_avg - eye_avg

    # Choose oriented crop rectangle.
    x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
    x /= np.hypot(*x)
    x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
    y = np.flipud(x) * [-1, 1]
    c = eye_avg + eye_to_mouth * 0.1
    quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
    qsize = np.hypot(*x) * 2

    # Shrink.
    shrink = int(np.floor(qsize / output_size * 0.5))
    if shrink > 1:
114 115
        rsize = (int(np.rint(float(img.size[0]) / shrink)),
                 int(np.rint(float(img.size[1]) / shrink)))
H
Hecong Wu 已提交
116 117 118 119 120 121
        img = img.resize(rsize, Image.ANTIALIAS)
        quad /= shrink
        qsize /= shrink

    # Crop.
    border = max(int(np.rint(qsize * 0.1)), 3)
122 123 124 125 126
    crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))),
            int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))))
    crop = (max(crop[0] - border, 0), max(crop[1] - border, 0),
            min(crop[2] + border,
                img.size[0]), min(crop[3] + border, img.size[1]))
H
Hecong Wu 已提交
127 128 129 130 131
    if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
        img = img.crop(crop)
        quad -= crop[0:2]

    # Pad.
132 133 134 135 136 137
    pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))),
           int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))))
    pad = (max(-pad[0] + border,
               0), max(-pad[1] + border,
                       0), max(pad[2] - img.size[0] + border,
                               0), max(pad[3] - img.size[1] + border, 0))
H
Hecong Wu 已提交
138 139
    if enable_padding and max(pad) > border - 4:
        pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
140 141
        img = np.pad(np.float32(img),
                     ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
H
Hecong Wu 已提交
142 143
        h, w, _ = img.shape
        y, x, _ = np.ogrid[:h, :w, :1]
144 145 146 147 148 149
        mask = np.maximum(
            1.0 -
            np.minimum(np.float32(x) / pad[0],
                       np.float32(w - 1 - x) / pad[2]), 1.0 -
            np.minimum(np.float32(y) / pad[1],
                       np.float32(h - 1 - y) / pad[3]))
H
Hecong Wu 已提交
150
        blur = qsize * 0.02
151 152 153
        img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) -
                img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
        img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
H
Hecong Wu 已提交
154 155 156 157
        img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
        quad += pad[:2]

    # Transform.
158 159
    img = img.transform((transform_size, transform_size), Image.QUAD,
                        (quad + 0.5).flatten(), Image.BILINEAR)
H
Hecong Wu 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

    return img


class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self


class Pixel2Style2PixelPredictor(BasePredictor):
    def __init__(self,
                 output_path='output_dir',
                 weight_path=None,
                 model_type=None,
                 seed=None,
                 size=1024,
                 style_dim=512,
                 n_mlp=8,
                 channel_multiplier=2):
        self.output_path = output_path

        if weight_path is None and model_type != 'default':
            if model_type in model_cfgs.keys():
184 185
                weight_path = get_path_from_url(
                    model_cfgs[model_type]['model_urls'])
H
Hecong Wu 已提交
186 187 188
                size = model_cfgs[model_type].get('size', size)
                style_dim = model_cfgs[model_type].get('style_dim', style_dim)
                n_mlp = model_cfgs[model_type].get('n_mlp', n_mlp)
189 190
                channel_multiplier = model_cfgs[model_type].get(
                    'channel_multiplier', channel_multiplier)
H
Hecong Wu 已提交
191 192
                checkpoint = paddle.load(weight_path)
            else:
193 194
                raise ValueError(
                    'Predictor need a weight path or a pretrained model type')
H
Hecong Wu 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207
        else:
            checkpoint = paddle.load(weight_path)

        opts = checkpoint.pop('opts')
        opts = AttrDict(opts)
        opts['size'] = size
        opts['style_dim'] = style_dim
        opts['n_mlp'] = n_mlp
        opts['channel_multiplier'] = channel_multiplier

        self.generator = Pixel2Style2Pixel(opts)
        self.generator.set_state_dict(checkpoint)
        self.generator.eval()
208

H
Hecong Wu 已提交
209 210 211 212 213 214 215 216 217 218 219
        if seed is not None:
            paddle.seed(seed)
            random.seed(seed)
            np.random.seed(seed)

        self.model_type = 'default' if model_type is None else model_type

    def run(self, image):
        src_img = run_alignment(image)
        src_img = np.asarray(src_img)
        transformed_image = model_cfgs[self.model_type]['transform'](src_img)
220 221 222 223 224
        dst_img, latents = self.generator(paddle.to_tensor(
            transformed_image[None, ...]),
                                          resize=False,
                                          return_latents=True)
        dst_img = (dst_img * 0.5 + 0.5)[0].numpy() * 255
H
Hecong Wu 已提交
225
        dst_img = dst_img.transpose((1, 2, 0))
226
        dst_npy = latents[0].numpy()
H
Hecong Wu 已提交
227 228 229 230 231 232

        os.makedirs(self.output_path, exist_ok=True)
        save_src_path = os.path.join(self.output_path, 'src.png')
        cv2.imwrite(save_src_path, cv2.cvtColor(src_img, cv2.COLOR_RGB2BGR))
        save_dst_path = os.path.join(self.output_path, 'dst.png')
        cv2.imwrite(save_dst_path, cv2.cvtColor(dst_img, cv2.COLOR_RGB2BGR))
233 234
        save_npy_path = os.path.join(self.output_path, 'dst.npy')
        np.save(save_npy_path, dst_npy)
H
Hecong Wu 已提交
235

236
        return src_img, dst_img, dst_npy