pixel2style2pixel_predictor.py 7.5 KB
Newer Older
H
Hecong Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import scipy
import random
import numpy as np
import paddle
import paddle.vision.transforms as T
import ppgan.faceutils as futils
from .base_predictor import BasePredictor
from ppgan.models.generators import Pixel2Style2Pixel
from ppgan.utils.download import get_path_from_url
from PIL import Image


model_cfgs = {
    'ffhq-inversion': {
        'model_urls': 'https://paddlegan.bj.bcebos.com/models/pSp-ffhq-inversion.pdparams',
        'transform': T.Compose([
            T.Resize((256, 256)),
            T.Transpose(),
            T.Normalize([127.5, 127.5, 127.5], [127.5, 127.5, 127.5])
        ]),
        'size': 1024,
        'style_dim': 512,
        'n_mlp': 8,
        'channel_multiplier': 2
    },
    'ffhq-toonify': {
        'model_urls': 'https://paddlegan.bj.bcebos.com/models/pSp-ffhq-toonify.pdparams',
        'transform': T.Compose([
            T.Resize((256, 256)),
            T.Transpose(),
            T.Normalize([127.5, 127.5, 127.5], [127.5, 127.5, 127.5])
        ]),
        'size': 1024,
        'style_dim': 512,
        'n_mlp': 8,
        'channel_multiplier': 2
    },
    'default': {
        'transform': T.Compose([
            T.Resize((256, 256)),
            T.Transpose(),
            T.Normalize([127.5, 127.5, 127.5], [127.5, 127.5, 127.5])
        ])
    }
}


def run_alignment(image_path):
    img = Image.open(image_path).convert("RGB")
    face = futils.dlib.detect(img)
    if not face:
        raise Exception('Could not find a face in the given image.')
    face_on_image = face[0]
    lm = futils.dlib.landmarks(img, face_on_image)
    lm = np.array(lm)[:,::-1]
    lm_eye_left      = lm[36 : 42]
    lm_eye_right     = lm[42 : 48]
    lm_mouth_outer   = lm[48 : 60]

    output_size = 1024
    transform_size = 4096
    enable_padding = True

    # Calculate auxiliary vectors.
    eye_left     = np.mean(lm_eye_left, axis=0)
    eye_right    = np.mean(lm_eye_right, axis=0)
    eye_avg      = (eye_left + eye_right) * 0.5
    eye_to_eye   = eye_right - eye_left
    mouth_left   = lm_mouth_outer[0]
    mouth_right  = lm_mouth_outer[6]
    mouth_avg    = (mouth_left + mouth_right) * 0.5
    eye_to_mouth = mouth_avg - eye_avg

    # Choose oriented crop rectangle.
    x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
    x /= np.hypot(*x)
    x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
    y = np.flipud(x) * [-1, 1]
    c = eye_avg + eye_to_mouth * 0.1
    quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
    qsize = np.hypot(*x) * 2

    # Shrink.
    shrink = int(np.floor(qsize / output_size * 0.5))
    if shrink > 1:
        rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
        img = img.resize(rsize, Image.ANTIALIAS)
        quad /= shrink
        qsize /= shrink

    # Crop.
    border = max(int(np.rint(qsize * 0.1)), 3)
    crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
    crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
    if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
        img = img.crop(crop)
        quad -= crop[0:2]

    # Pad.
    pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
    pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
    if enable_padding and max(pad) > border - 4:
        pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
        img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
        h, w, _ = img.shape
        y, x, _ = np.ogrid[:h, :w, :1]
        mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
        blur = qsize * 0.02
        img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
        img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
        img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
        quad += pad[:2]

    # Transform.
    img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)

    return img


class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self


class Pixel2Style2PixelPredictor(BasePredictor):
    def __init__(self,
                 output_path='output_dir',
                 weight_path=None,
                 model_type=None,
                 seed=None,
                 size=1024,
                 style_dim=512,
                 n_mlp=8,
                 channel_multiplier=2):
        self.output_path = output_path

        if weight_path is None and model_type != 'default':
            if model_type in model_cfgs.keys():
                weight_path = get_path_from_url(model_cfgs[model_type]['model_urls'])
                size = model_cfgs[model_type].get('size', size)
                style_dim = model_cfgs[model_type].get('style_dim', style_dim)
                n_mlp = model_cfgs[model_type].get('n_mlp', n_mlp)
                channel_multiplier = model_cfgs[model_type].get('channel_multiplier', channel_multiplier)
                checkpoint = paddle.load(weight_path)
            else:
                raise ValueError('Predictor need a weight path or a pretrained model type')
        else:
            checkpoint = paddle.load(weight_path)

        opts = checkpoint.pop('opts')
        opts = AttrDict(opts)
        opts['size'] = size
        opts['style_dim'] = style_dim
        opts['n_mlp'] = n_mlp
        opts['channel_multiplier'] = channel_multiplier

        self.generator = Pixel2Style2Pixel(opts)
        self.generator.set_state_dict(checkpoint)
        self.generator.eval()
        
        if seed is not None:
            paddle.seed(seed)
            random.seed(seed)
            np.random.seed(seed)

        self.model_type = 'default' if model_type is None else model_type

    def run(self, image):
        src_img = run_alignment(image)
        src_img = np.asarray(src_img)
        transformed_image = model_cfgs[self.model_type]['transform'](src_img)
        dst_img = (self.generator(paddle.to_tensor(transformed_image[None, ...]))
                  * 0.5 + 0.5)[0].numpy() * 255
        dst_img = dst_img.transpose((1, 2, 0))

        os.makedirs(self.output_path, exist_ok=True)
        save_src_path = os.path.join(self.output_path, 'src.png')
        cv2.imwrite(save_src_path, cv2.cvtColor(src_img, cv2.COLOR_RGB2BGR))
        save_dst_path = os.path.join(self.output_path, 'dst.png')
        cv2.imwrite(save_dst_path, cv2.cvtColor(dst_img, cv2.COLOR_RGB2BGR))

        return src_img