base_dataset.py 2.9 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8
# code was heavily based on https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
import random
import numpy as np

from paddle.io import Dataset
from PIL import Image
import cv2

L
LielinJiang 已提交
9
import paddle.vision.transforms as transforms
L
LielinJiang 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
from .transforms import transforms as T
from abc import ABC, abstractmethod


class BaseDataset(Dataset, ABC):
    """This class is an abstract base class (ABC) for datasets.
    """
    def __init__(self, cfg):
        """Initialize the class; save the options in the class

        Args:
            cfg (dict) -- stores all the experiment flags
        """
        self.cfg = cfg
        self.root = cfg.dataroot

    @abstractmethod
    def __len__(self):
        """Return the total number of images in the dataset."""
        return 0

    @abstractmethod
    def __getitem__(self, index):
        """Return a data point and its metadata information.

        Parameters:
            index - - a random integer for data indexing

        Returns:
            a dictionary of data with their names. It ususally contains the data itself and its metadata information.
        """
        pass


def get_params(cfg, size):
    w, h = size
    new_h = h
    new_w = w
    if cfg.preprocess == 'resize_and_crop':
        new_h = new_w = cfg.load_size
    elif cfg.preprocess == 'scale_width_and_crop':
        new_w = cfg.load_size
        new_h = cfg.load_size * h // w

    x = random.randint(0, np.maximum(0, new_w - cfg.crop_size))
    y = random.randint(0, np.maximum(0, new_h - cfg.crop_size))

    flip = random.random() > 0.5

    return {'crop_pos': (x, y), 'flip': flip}


L
LielinJiang 已提交
62 63 64 65 66
def get_transform(cfg,
                  params=None,
                  grayscale=False,
                  method=cv2.INTER_CUBIC,
                  convert=True):
L
LielinJiang 已提交
67 68 69
    transform_list = []
    if grayscale:
        print('grayscale not support for now!!!')
L
LielinJiang 已提交
70
        pass
L
LielinJiang 已提交
71 72 73 74 75
    if 'resize' in cfg.preprocess:
        osize = (cfg.load_size, cfg.load_size)
        transform_list.append(transforms.Resize(osize, method))
    elif 'scale_width' in cfg.preprocess:
        print('scale_width not support for now!!!')
L
LielinJiang 已提交
76
        pass
L
LielinJiang 已提交
77 78

    if 'crop' in cfg.preprocess:
L
LielinJiang 已提交
79

L
LielinJiang 已提交
80 81 82 83 84 85 86
        if params is None:
            transform_list.append(T.RandomCrop(cfg.crop_size))
        else:
            transform_list.append(T.Crop(params['crop_pos'], cfg.crop_size))

    if cfg.preprocess == 'none':
        print('preprocess not support for now!!!')
L
LielinJiang 已提交
87
        pass
L
LielinJiang 已提交
88 89 90 91 92 93

    if not cfg.no_flip:
        if params is None:
            transform_list.append(transforms.RandomHorizontalFlip())
        elif params['flip']:
            transform_list.append(transforms.RandomHorizontalFlip(1.0))
L
LielinJiang 已提交
94

L
LielinJiang 已提交
95 96
    if convert:
        transform_list += [transforms.Permute(to_rgb=True)]
L
LielinJiang 已提交
97
        transform_list += [
L
LielinJiang 已提交
98
            transforms.Normalize((0., 0., 0.), (255., 255., 255.))
L
LielinJiang 已提交
99
        ]
L
LielinJiang 已提交
100 101 102
        # transform_list += [
        #     transforms.Normalize((127.5, 127.5, 127.5), (127.5, 127.5, 127.5))
        # ]
L
LielinJiang 已提交
103
    return transforms.Compose(transform_list)