test_train_inference_python.sh 14.6 KB
Newer Older
L
lzzyzlbb 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#!/bin/bash
source test_tipc/common_func.sh

FILENAME=$1
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer']
MODE=$2

dataline=$(awk 'NR==1, NR==51{print}'  $FILENAME)

# parser params
IFS=$'\n'
lines=(${dataline})
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")

autocast_list=$(func_parser_value "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
epoch_num=$(func_parser_params "${lines[6]}")
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
train_batch_value=$(func_parser_params "${lines[8]}")
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")

trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")

36 37
to_static_key=$(func_parser_key "${lines[19]}")
to_static_trainer=$(func_parser_value "${lines[19]}")
L
lzzyzlbb 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50
trainer_key2=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_value "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")

inference_dir=$(func_parser_value "${lines[35]}")

51
# parser inference model
L
lzzyzlbb 已提交
52 53 54
infer_model_dir_list=$(func_parser_value "${lines[36]}")
infer_export_list=$(func_parser_value "${lines[37]}")
infer_is_quant=$(func_parser_value "${lines[38]}")
55
# parser inference
L
lzzyzlbb 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")

76
LOG_PATH="./test_tipc/output/${model_name}/${MODE}"
L
lzzyzlbb 已提交
77 78 79 80 81 82 83 84 85 86 87
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_python.log"

function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
88
    # inference
L
lzzyzlbb 已提交
89 90 91 92 93 94 95 96 97 98
    for use_gpu in ${use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
            for use_mkldnn in ${use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
                        for precision in ${precision_list[*]}; do
                            set_precision=$(func_set_params "${precision_key}" "${precision}")
99

L
lzzyzlbb 已提交
100 101 102 103 104 105 106 107 108 109 110
                            _save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log"
                            set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                            set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                            set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                            set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                            set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                            set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                            command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_model_dir} > ${_save_log_path} 2>&1 "
                            eval $command
                            last_status=${PIPESTATUS[0]}
                            eval "cat ${_save_log_path}"
B
Birdylx 已提交
111
                            status_check $last_status "${command}" "${status_log}" "${model_name}" "${_save_log_path}"
L
lzzyzlbb 已提交
112 113 114 115 116 117 118 119 120
                        done
                    done
                done
            done
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
121
                    fi
L
lzzyzlbb 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
                        continue
                    fi
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/python_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
B
Birdylx 已提交
141
                        status_check $last_status "${command}" "${status_log}" "${model_name}" "${_save_log_path}"
142

L
lzzyzlbb 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
                    done
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}

if [ ${MODE} = "whole_infer" ]; then
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_run_exports=(${infer_export_list})
    infer_quant_flag=(${infer_is_quant})
    for infer_model in ${infer_model_dir_list[*]}; do
        # run export
        if [ ${infer_run_exports[Count]} != "null" ];then
            save_infer_dir=$(dirname $infer_model)
            set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
            set_save_infer_key="${save_infer_key} ${save_infer_dir}"
B
Birdylx 已提交
171 172
            export_log_path="${LOG_PATH}_export_${Count}.log"
            export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key} > ${export_log_path} 2>&1"
173
            echo ${infer_run_exports[Count]}
L
lzzyzlbb 已提交
174 175 176
            echo  $export_cmd
            eval $export_cmd
            status_export=$?
B
Birdylx 已提交
177
            status_check $status_export "${export_cmd}" "${status_log}" "${model_name}" "${export_log_path}"
L
lzzyzlbb 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        else
            save_infer_dir=${infer_model}
        fi
        #run inference
        func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}"
        Count=$(($Count + 1))
    done
else
    IFS="|"
    export Count=0
    USE_GPU_KEY=(${train_use_gpu_value})
    for gpu in ${gpu_list[*]}; do
        train_use_gpu=${USE_GPU_KEY[Count]}
        Count=$(($Count + 1))
        ips=""
        if [ ${gpu} = "-1" ];then
            env=""
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            eval ${env}
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
211 212 213
        for autocast in ${autocast_list[*]}; do
            if [ ${autocast} = "fp16" ]; then
                set_amp_config="--amp"
B
Birdylx 已提交
214
                set_amp_level="--amp_level=O2"
L
lzzyzlbb 已提交
215 216
            else
                set_amp_config=" "
B
Birdylx 已提交
217
                set_amp_level=" "
218 219
            fi
            for trainer in ${trainer_list[*]}; do
L
lzzyzlbb 已提交
220
                flag_quant=False
221 222 223 224 225 226 227 228 229 230
                # In case of @to_static, we re-used norm_traier,
                # but append "-o Global.to_static=True" for config
                # to trigger "apply_to_static" logic in 'engine.py'
                if [ ${trainer} = "${to_static_key}" ]; then
                    run_train="${norm_trainer}  ${to_static_trainer}"
                    run_export=${norm_export}
                else
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                fi
231

L
lzzyzlbb 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
                if [ ${run_train} = "null" ]; then
                    continue
                fi
                set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu}")
                if [ ${#ips} -le 26 ];then
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
                    nodes=1
                else
                    IFS=","
                    ips_array=(${ips})
                    IFS="|"
                    nodes=${#ips_array[@]}
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
                fi
                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
B
Birdylx 已提交
253
                    cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_train_params1} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_amp_config} ${set_amp_level}"
L
lzzyzlbb 已提交
254
                elif [ ${#ips} -le 26 ];then  # train with multi-gpu
B
Birdylx 已提交
255
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_train_params1} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_amp_config} ${set_amp_level}"
L
lzzyzlbb 已提交
256
                else     # train with multi-machine
B
Birdylx 已提交
257
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_train_params1} ${set_pretrain} ${set_epoch} ${set_batchsize} ${set_amp_config} ${set_amp_level}"
L
lzzyzlbb 已提交
258 259
                fi
                # run train
L
lzzyzlbb 已提交
260
                export FLAGS_cudnn_deterministic=True
L
lzzyzlbb 已提交
261 262
                eval $cmd
                echo $cmd
263 264 265
                log_name=${train_model_name/checkpoint.pdparams/.txt}
                train_log_path=$( echo "${save_log}/${log_name}")
                eval "cat ${train_log_path} >> ${save_log}.log"
B
Birdylx 已提交
266
                status_check $? "${cmd}" "${status_log}" "${model_name}" "${save_log}.log"
L
lzzyzlbb 已提交
267 268

                set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
269 270 271
                # save norm trained models to set pretrain for pact training and fpgm training

                # run eval
L
lzzyzlbb 已提交
272 273
                if [ ${eval_py} != "null" ]; then
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
B
Birdylx 已提交
274 275
                    eval_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_eval.log"
                    eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1} > ${eval_log_path} 2>&1"
L
lzzyzlbb 已提交
276
                    eval $eval_cmd
B
Birdylx 已提交
277
                    status_check $? "${eval_cmd}" "${status_log}" "${model_name}" "${eval_log_path}"
L
lzzyzlbb 已提交
278 279
                fi
                # run export model
280
                if [ ${run_export} != "null" ]; then
L
lzzyzlbb 已提交
281 282 283 284 285
                    # run export model
                    save_infer_path="${save_log}"
                    set_export_weight="${save_log}/${train_model_name}"
                    set_export_weight_path=$( echo ${set_export_weight})
                    set_save_infer_key="${save_infer_key} ${save_infer_path}"
B
Birdylx 已提交
286 287
                    export_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_export.log"
                    export_cmd="${python} ${run_export}  ${set_export_weight_path} ${set_save_infer_key} > ${export_log_path} 2>&1"
L
lzzyzlbb 已提交
288
                    eval "$export_cmd"
B
Birdylx 已提交
289
                    status_check $? "${export_cmd}" "${status_log}" "${model_name}" "${export_log_path}"
290

L
lzzyzlbb 已提交
291 292 293 294 295 296 297 298 299
                    #run inference
                    eval $env
                    save_infer_path="${save_log}"
                    if [ ${inference_dir} != "null" ] && [ ${inference_dir} != '##' ]; then
                        infer_model_dir="${save_infer_path}/${inference_dir}"
                    else
                        infer_model_dir=${save_infer_path}
                    fi
                    func_inference "${python}" "${inference_py}" "${infer_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
300

L
lzzyzlbb 已提交
301 302
                    eval "unset CUDA_VISIBLE_DEVICES"
                fi
303 304
            done  # done with:    for trainer in ${trainer_list[*]}; do
        done      # done with:    for autocast in ${autocast_list[*]}; do
L
lzzyzlbb 已提交
305 306
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then