test_train_inference_python.sh 13.6 KB
Newer Older
L
lzzyzlbb 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#!/bin/bash
source test_tipc/common_func.sh

FILENAME=$1
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer']
MODE=$2

dataline=$(awk 'NR==1, NR==51{print}'  $FILENAME)

# parser params
IFS=$'\n'
lines=(${dataline})
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")

autocast_list=$(func_parser_value "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
epoch_num=$(func_parser_params "${lines[6]}")
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
train_batch_value=$(func_parser_params "${lines[8]}")
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")

trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")

trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
trainer_key2=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_value "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")

inference_dir=$(func_parser_value "${lines[35]}")

51
# parser inference model
L
lzzyzlbb 已提交
52 53 54
infer_model_dir_list=$(func_parser_value "${lines[36]}")
infer_export_list=$(func_parser_value "${lines[37]}")
infer_is_quant=$(func_parser_value "${lines[38]}")
55
# parser inference
L
lzzyzlbb 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")

76
LOG_PATH="./test_tipc/output/${model_name}/${MODE}"
L
lzzyzlbb 已提交
77 78 79 80 81 82 83 84 85 86 87
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_python.log"

function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
88
    # inference
L
lzzyzlbb 已提交
89 90 91 92 93 94 95 96 97 98
    for use_gpu in ${use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
            for use_mkldnn in ${use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
                        for precision in ${precision_list[*]}; do
                            set_precision=$(func_set_params "${precision_key}" "${precision}")
99

L
lzzyzlbb 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                            _save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log"
                            set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                            set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                            set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                            set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                            set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                            set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                            command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_model_dir} > ${_save_log_path} 2>&1 "
                            eval $command
                            last_status=${PIPESTATUS[0]}
                            eval "cat ${_save_log_path}"
                            status_check $last_status "${command}" "${status_log}"
                        done
                    done
                done
            done
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
121
                    fi
L
lzzyzlbb 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
                        continue
                    fi
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/python_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
142

L
lzzyzlbb 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
                    done
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}

if [ ${MODE} = "whole_infer" ]; then
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_run_exports=(${infer_export_list})
    infer_quant_flag=(${infer_is_quant})
    for infer_model in ${infer_model_dir_list[*]}; do
        # run export
        if [ ${infer_run_exports[Count]} != "null" ];then
            save_infer_dir=$(dirname $infer_model)
            set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
            set_save_infer_key="${save_infer_key} ${save_infer_dir}"
            export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
172
            echo ${infer_run_exports[Count]}
L
lzzyzlbb 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
            echo  $export_cmd
            eval $export_cmd
            status_export=$?
            status_check $status_export "${export_cmd}" "${status_log}"
        else
            save_infer_dir=${infer_model}
        fi
        #run inference
        func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}"
        Count=$(($Count + 1))
    done
else
    IFS="|"
    export Count=0
    USE_GPU_KEY=(${train_use_gpu_value})
    for gpu in ${gpu_list[*]}; do
        train_use_gpu=${USE_GPU_KEY[Count]}
        Count=$(($Count + 1))
        ips=""
        if [ ${gpu} = "-1" ];then
            env=""
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            eval ${env}
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
210 211 212
        for autocast in ${autocast_list[*]}; do
            if [ ${autocast} = "fp16" ]; then
                set_amp_config="--amp"
B
Birdylx 已提交
213
                set_amp_level="--amp_level=O2"
L
lzzyzlbb 已提交
214 215
            else
                set_amp_config=" "
B
Birdylx 已提交
216
                set_amp_level=" "
217 218
            fi
            for trainer in ${trainer_list[*]}; do
L
lzzyzlbb 已提交
219 220 221
                flag_quant=False
                run_train=${norm_trainer}
                run_export=${norm_export}
222

L
lzzyzlbb 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
                if [ ${run_train} = "null" ]; then
                    continue
                fi
                set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu}")
                if [ ${#ips} -le 26 ];then
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
                    nodes=1
                else
                    IFS=","
                    ips_array=(${ips})
                    IFS="|"
                    nodes=${#ips_array[@]}
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
                fi
                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
B
Birdylx 已提交
244
                    cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_train_params1} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_amp_config} ${set_amp_level}"
L
lzzyzlbb 已提交
245
                elif [ ${#ips} -le 26 ];then  # train with multi-gpu
B
Birdylx 已提交
246
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_train_params1} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_amp_config} ${set_amp_level}"
L
lzzyzlbb 已提交
247
                else     # train with multi-machine
B
Birdylx 已提交
248
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_train_params1} ${set_pretrain} ${set_epoch} ${set_batchsize} ${set_amp_config} ${set_amp_level}"
L
lzzyzlbb 已提交
249 250
                fi
                # run train
L
lzzyzlbb 已提交
251
                export FLAGS_cudnn_deterministic=True
L
lzzyzlbb 已提交
252 253
                eval $cmd
                echo $cmd
254 255 256
                log_name=${train_model_name/checkpoint.pdparams/.txt}
                train_log_path=$( echo "${save_log}/${log_name}")
                eval "cat ${train_log_path} >> ${save_log}.log"
L
lzzyzlbb 已提交
257 258 259
                status_check $? "${cmd}" "${status_log}"

                set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
260 261 262
                # save norm trained models to set pretrain for pact training and fpgm training

                # run eval
L
lzzyzlbb 已提交
263 264
                if [ ${eval_py} != "null" ]; then
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
265
                    eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}"
L
lzzyzlbb 已提交
266 267 268 269
                    eval $eval_cmd
                    status_check $? "${eval_cmd}" "${status_log}"
                fi
                # run export model
270
                if [ ${run_export} != "null" ]; then
L
lzzyzlbb 已提交
271 272 273 274 275
                    # run export model
                    save_infer_path="${save_log}"
                    set_export_weight="${save_log}/${train_model_name}"
                    set_export_weight_path=$( echo ${set_export_weight})
                    set_save_infer_key="${save_infer_key} ${save_infer_path}"
B
Birdylx 已提交
276
                    export_cmd="${python} ${run_export}  ${set_export_weight_path} ${set_save_infer_key} > ${save_log}_export.log 2>&1"
L
lzzyzlbb 已提交
277 278
                    eval "$export_cmd"
                    status_check $? "${export_cmd}" "${status_log}"
279

L
lzzyzlbb 已提交
280 281 282 283 284 285 286 287 288
                    #run inference
                    eval $env
                    save_infer_path="${save_log}"
                    if [ ${inference_dir} != "null" ] && [ ${inference_dir} != '##' ]; then
                        infer_model_dir="${save_infer_path}/${inference_dir}"
                    else
                        infer_model_dir=${save_infer_path}
                    fi
                    func_inference "${python}" "${inference_py}" "${infer_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
289

L
lzzyzlbb 已提交
290 291
                    eval "unset CUDA_VISIBLE_DEVICES"
                fi
292 293
            done  # done with:    for trainer in ${trainer_list[*]}; do
        done      # done with:    for autocast in ${autocast_list[*]}; do
L
lzzyzlbb 已提交
294 295
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then