arcface_arch_paddle.py 9.6 KB
Newer Older
Y
yangshurong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from .builder import DISCRIMINATORS


def conv3x3(inplanes, outplanes, stride=1):
    """A simple wrapper for 3x3 convolution with padding.

    Args:
        inplanes (int): Channel number of inputs.
        outplanes (int): Channel number of outputs.
        stride (int): Stride in convolution. Default: 1.
    """
    return nn.Conv2D(inplanes,
                     outplanes,
                     kernel_size=3,
                     stride=stride,
                     padding=1,
                     bias_attr=False)


class BasicBlock(nn.Layer):
    """Basic residual block used in the ResNetArcFace architecture.

    Args:
        inplanes (int): Channel number of inputs.
        planes (int): Channel number of outputs.
        stride (int): Stride in convolution. Default: 1.
        downsample (nn.Module): The downsample module. Default: None.
    """
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2D(planes)
        self.relu = nn.ReLU()
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2D(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out


class IRBlock(nn.Layer):
    """Improved residual block (IR Block) used in the ResNetArcFace architecture.

    Args:
        inplanes (int): Channel number of inputs.
        planes (int): Channel number of outputs.
        stride (int): Stride in convolution. Default: 1.
        downsample (nn.Module): The downsample module. Default: None.
        use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
    """
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 use_se=True):
        super(IRBlock, self).__init__()
        self.bn0 = nn.BatchNorm2D(inplanes)
        self.conv1 = conv3x3(inplanes, inplanes)
        self.bn1 = nn.BatchNorm2D(inplanes)
        self.prelu = PReLU_layer()
        self.conv2 = conv3x3(inplanes, planes, stride)
        self.bn2 = nn.BatchNorm2D(planes)
        self.downsample = downsample
        self.stride = stride
        self.use_se = use_se
        if self.use_se:
            self.se = SEBlock(planes)

    def forward(self, x):
        residual = x
        out = self.bn0(x)
        out = self.conv1(out)
        out = self.bn1(out)
        out = self.prelu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.use_se:
            out = self.se(out)
        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.prelu(out)
        return out


class Bottleneck(nn.Layer):
    """Bottleneck block used in the ResNetArcFace architecture.

    Args:
        inplanes (int): Channel number of inputs.
        planes (int): Channel number of outputs.
        stride (int): Stride in convolution. Default: 1.
        downsample (nn.Module): The downsample module. Default: None.
    """
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2D(inplanes, planes, kernel_size=1, bias_attr=False)
        self.bn1 = nn.BatchNorm2D(planes)
        self.conv2 = nn.Conv2D(planes,
                               planes,
                               kernel_size=3,
                               stride=stride,
                               padding=1,
                               bias_attr=False)
        self.bn2 = nn.BatchNorm2D(planes)
        self.conv3 = nn.Conv2D(planes,
                               planes * self.expansion,
                               kernel_size=1,
                               bias_attr=False)
        self.bn3 = nn.BatchNorm2D(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv3(out)
        out = self.bn3(out)
        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out


class PReLU_layer(nn.Layer):
    def __init__(self, init_value=0.25, num=1):
        super(PReLU_layer, self).__init__()
        x = self.create_parameter(
            attr=None,
            shape=[num],
            dtype=paddle.get_default_dtype(),
            is_bias=False,
            default_initializer=nn.initializer.Constant(init_value))
        self.add_parameter('weight', x)

    def forward(self, x):
        return F.prelu(x, self.weight)


class SEBlock(nn.Layer):
    """The squeeze-and-excitation block (SEBlock) used in the IRBlock.

    Args:
        channel (int): Channel number of inputs.
        reduction (int): Channel reduction ration. Default: 16.
    """
    def __init__(self, channel, reduction=16):
        super(SEBlock, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2D(1)
        self.fc = nn.Sequential(nn.Linear(channel, channel // reduction),
                                nn.PReLU(),
                                nn.Linear(channel // reduction, channel),
                                nn.Sigmoid())

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y


def constant_init(param, **kwargs):
    initializer = nn.initializer.Constant(**kwargs)
    initializer(param, param.block)


@DISCRIMINATORS.register()
class ResNetArcFace(nn.Layer):
    """ArcFace with ResNet architectures.

    Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition.

    Args:
        block (str): Block used in the ArcFace architecture.
        layers (tuple(int)): Block numbers in each layer.
        use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
    """
    def __init__(self, block, layers, use_se=True, reprod_logger=None):
        if block == 'IRBlock':
            block = IRBlock
        self.inplanes = 64
        self.use_se = use_se
        super(ResNetArcFace, self).__init__()
        self.conv1 = nn.Conv2D(1, 64, kernel_size=3, padding=1, bias_attr=False)
        self.bn1 = nn.BatchNorm2D(64)
        self.maxpool = nn.MaxPool2D(kernel_size=2, stride=2)
        self.prelu = PReLU_layer()
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.bn4 = nn.BatchNorm2D(512)
        self.dropout = nn.Dropout()
        self.fc5 = nn.Linear(512 * 8 * 8, 512)
        self.bn5 = nn.BatchNorm1D(512)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, paddle.nn.Conv2D):
            nn.initializer.XavierNormal(m.weight)
        elif isinstance(m, paddle.nn.BatchNorm2D) or isinstance(
                m, paddle.nn.BatchNorm1D):
            constant_init(m.weight, value=1.)
            constant_init(m.bias, value=0.)
        elif isinstance(m, paddle.nn.Linear):
            nn.initializer.XavierNormal(m.weight)
            constant_init(m.bias, value=0.)

    def _make_layer(self, block, planes, num_blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2D(self.inplanes,
                          planes * block.expansion,
                          kernel_size=1,
                          stride=stride,
                          bias_attr=False),
                nn.BatchNorm2D(planes * block.expansion))
        layers = []
        layers.append(
            block(self.inplanes, planes, stride, downsample,
                  use_se=self.use_se))
        self.inplanes = planes
        for _ in range(1, num_blocks):
            layers.append(block(self.inplanes, planes, use_se=self.use_se))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.prelu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.bn4(x)
        x = self.dropout(x)
        x = x.reshape([x.shape[0], -1])
        x = self.fc5(x)
        x = self.bn5(x)
        return x