# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from .builder import DISCRIMINATORS def conv3x3(inplanes, outplanes, stride=1): """A simple wrapper for 3x3 convolution with padding. Args: inplanes (int): Channel number of inputs. outplanes (int): Channel number of outputs. stride (int): Stride in convolution. Default: 1. """ return nn.Conv2D(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias_attr=False) class BasicBlock(nn.Layer): """Basic residual block used in the ResNetArcFace architecture. Args: inplanes (int): Channel number of inputs. planes (int): Channel number of outputs. stride (int): Stride in convolution. Default: 1. downsample (nn.Module): The downsample module. Default: None. """ expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2D(planes) self.relu = nn.ReLU() self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2D(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class IRBlock(nn.Layer): """Improved residual block (IR Block) used in the ResNetArcFace architecture. Args: inplanes (int): Channel number of inputs. planes (int): Channel number of outputs. stride (int): Stride in convolution. Default: 1. downsample (nn.Module): The downsample module. Default: None. use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True. """ expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True): super(IRBlock, self).__init__() self.bn0 = nn.BatchNorm2D(inplanes) self.conv1 = conv3x3(inplanes, inplanes) self.bn1 = nn.BatchNorm2D(inplanes) self.prelu = PReLU_layer() self.conv2 = conv3x3(inplanes, planes, stride) self.bn2 = nn.BatchNorm2D(planes) self.downsample = downsample self.stride = stride self.use_se = use_se if self.use_se: self.se = SEBlock(planes) def forward(self, x): residual = x out = self.bn0(x) out = self.conv1(out) out = self.bn1(out) out = self.prelu(out) out = self.conv2(out) out = self.bn2(out) if self.use_se: out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.prelu(out) return out class Bottleneck(nn.Layer): """Bottleneck block used in the ResNetArcFace architecture. Args: inplanes (int): Channel number of inputs. planes (int): Channel number of outputs. stride (int): Stride in convolution. Default: 1. downsample (nn.Module): The downsample module. Default: None. """ expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2D(inplanes, planes, kernel_size=1, bias_attr=False) self.bn1 = nn.BatchNorm2D(planes) self.conv2 = nn.Conv2D(planes, planes, kernel_size=3, stride=stride, padding=1, bias_attr=False) self.bn2 = nn.BatchNorm2D(planes) self.conv3 = nn.Conv2D(planes, planes * self.expansion, kernel_size=1, bias_attr=False) self.bn3 = nn.BatchNorm2D(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class PReLU_layer(nn.Layer): def __init__(self, init_value=0.25, num=1): super(PReLU_layer, self).__init__() x = self.create_parameter( attr=None, shape=[num], dtype=paddle.get_default_dtype(), is_bias=False, default_initializer=nn.initializer.Constant(init_value)) self.add_parameter('weight', x) def forward(self, x): return F.prelu(x, self.weight) class SEBlock(nn.Layer): """The squeeze-and-excitation block (SEBlock) used in the IRBlock. Args: channel (int): Channel number of inputs. reduction (int): Channel reduction ration. Default: 16. """ def __init__(self, channel, reduction=16): super(SEBlock, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2D(1) self.fc = nn.Sequential(nn.Linear(channel, channel // reduction), nn.PReLU(), nn.Linear(channel // reduction, channel), nn.Sigmoid()) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y def constant_init(param, **kwargs): initializer = nn.initializer.Constant(**kwargs) initializer(param, param.block) @DISCRIMINATORS.register() class ResNetArcFace(nn.Layer): """ArcFace with ResNet architectures. Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition. Args: block (str): Block used in the ArcFace architecture. layers (tuple(int)): Block numbers in each layer. use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True. """ def __init__(self, block, layers, use_se=True, reprod_logger=None): if block == 'IRBlock': block = IRBlock self.inplanes = 64 self.use_se = use_se super(ResNetArcFace, self).__init__() self.conv1 = nn.Conv2D(1, 64, kernel_size=3, padding=1, bias_attr=False) self.bn1 = nn.BatchNorm2D(64) self.maxpool = nn.MaxPool2D(kernel_size=2, stride=2) self.prelu = PReLU_layer() self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.bn4 = nn.BatchNorm2D(512) self.dropout = nn.Dropout() self.fc5 = nn.Linear(512 * 8 * 8, 512) self.bn5 = nn.BatchNorm1D(512) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, paddle.nn.Conv2D): nn.initializer.XavierNormal(m.weight) elif isinstance(m, paddle.nn.BatchNorm2D) or isinstance( m, paddle.nn.BatchNorm1D): constant_init(m.weight, value=1.) constant_init(m.bias, value=0.) elif isinstance(m, paddle.nn.Linear): nn.initializer.XavierNormal(m.weight) constant_init(m.bias, value=0.) def _make_layer(self, block, planes, num_blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2D(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias_attr=False), nn.BatchNorm2D(planes * block.expansion)) layers = [] layers.append( block(self.inplanes, planes, stride, downsample, use_se=self.use_se)) self.inplanes = planes for _ in range(1, num_blocks): layers.append(block(self.inplanes, planes, use_se=self.use_se)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.prelu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.bn4(x) x = self.dropout(x) x = x.reshape([x.shape[0], -1]) x = self.fc5(x) x = self.bn5(x) return x