cycle_gan_model.py 9.9 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
import paddle
from .base_model import BaseModel

from .builder import MODELS
from .generators.builder import build_generator
from .discriminators.builder import build_discriminator
from .losses import GANLoss
# from ..modules.nn import L1Loss
from ..solver import build_optimizer
from ..utils.image_pool import ImagePool


@MODELS.register()
class CycleGANModel(BaseModel):
    """
    This class implements the CycleGAN model, for learning image-to-image translation without paired data.

    The model training requires '--dataset_mode unaligned' dataset.
    By default, it uses a '--netG resnet_9blocks' ResNet generator,
    a '--netD basic' discriminator (PatchGAN introduced by pix2pix),
    and a least-square GANs objective ('--gan_mode lsgan').

    CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf
    """

    def __init__(self, opt):
        """Initialize the CycleGAN class.

        Parameters:
            opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
        """
        BaseModel.__init__(self, opt)
        # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
        self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B']
        # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
        visual_names_A = ['real_A', 'fake_B', 'rec_A']
        visual_names_B = ['real_B', 'fake_A', 'rec_B']
        if self.isTrain and self.opt.lambda_identity > 0.0:  # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B)
            visual_names_A.append('idt_B')
            visual_names_B.append('idt_A')

        self.visual_names = visual_names_A + visual_names_B  # combine visualizations for A and B
        # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
        if self.isTrain:
            self.model_names = ['G_A', 'G_B', 'D_A', 'D_B']
        else:  # during test time, only load Gs
            self.model_names = ['G_A', 'G_B']

        # define networks (both Generators and discriminators)
        # The naming is different from those used in the paper.
        # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
        self.netG_A = build_generator(opt.model.generator)
        self.netG_B = build_generator(opt.model.generator)

        if self.isTrain:  # define discriminators
            self.netD_A = build_discriminator(opt.model.discriminator)
            self.netD_B = build_discriminator(opt.model.discriminator)

        if self.isTrain:
            if opt.lambda_identity > 0.0:  # only works when input and output images have the same number of channels
                assert(opt.dataset.train.input_nc == opt.dataset.train.output_nc)
            self.fake_A_pool = ImagePool(opt.dataset.train.pool_size)  # create image buffer to store previously generated images
            self.fake_B_pool = ImagePool(opt.dataset.train.pool_size)  # create image buffer to store previously generated images
            # define loss functions
            self.criterionGAN = GANLoss(opt.model.gan_mode, [[[[1.0]]]], [[[[0.0]]]])#.to(self.device)  # define GAN loss.
            self.criterionCycle = paddle.nn.L1Loss() 
            self.criterionIdt = paddle.nn.L1Loss()
            
            self.optimizer_G =  build_optimizer(opt.optimizer, parameter_list=self.netG_A.parameters() + self.netG_B.parameters())
            self.optimizer_D = build_optimizer(opt.optimizer, parameter_list=self.netD_A.parameters() + self.netD_B.parameters())
            # self.optimizer_DA = build_optimizer(opt.optimizer, parameter_list=self.netD_A.parameters()) 
            # self.optimizer_DB = build_optimizer(opt.optimizer, parameter_list=self.netD_B.parameters()) 
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D)
            # self.optimizers.append(self.optimizer_DA)
            # self.optimizers.append(self.optimizer_DB)
            self.optimizer_names.extend(['optimizer_G', 'optimizer_D'])#A', 'optimizer_DB'])

    def set_input(self, input):
        """Unpack input data from the dataloader and perform necessary pre-processing steps.

        Parameters:
            input (dict): include the data itself and its metadata information.

        The option 'direction' can be used to swap domain A and domain B.
        """
        AtoB = self.opt.dataset.train.direction == 'AtoB'
        
        self.real_A = paddle.imperative.to_variable(input[0] if AtoB else input[1])
        self.real_B = paddle.imperative.to_variable(input[1] if AtoB else input[0])

    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
        self.fake_B = self.netG_A(self.real_A)  # G_A(A)
        self.rec_A = self.netG_B(self.fake_B)   # G_B(G_A(A))
        self.fake_A = self.netG_B(self.real_B)  # G_B(B)
        self.rec_B = self.netG_A(self.fake_A)   # G_A(G_B(B))


    def forward_test(self, input):
        input = paddle.imperative.to_variable(input)
        net_g = getattr(self, 'netG_' + self.opt.dataset.test.direction[0])
        return net_g(input)

    def test(self, input):
        """Forward function used in test time.

        This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
        It also calls <compute_visuals> to produce additional visualization results
        """
        with paddle.imperative.no_grad():
            return self.forward_test(input)

    def backward_D_basic(self, netD, real, fake):
        """Calculate GAN loss for the discriminator

        Parameters:
            netD (network)      -- the discriminator D
            real (tensor array) -- real images
            fake (tensor array) -- images generated by a generator

        Return the discriminator loss.
        We also call loss_D.backward() to calculate the gradients.
        """
        # Real
        pred_real = netD(real)
        loss_D_real = self.criterionGAN(pred_real, True)
        # Fake
        pred_fake = netD(fake.detach())
        loss_D_fake = self.criterionGAN(pred_fake, False)
        # Combined loss and calculate gradients
        loss_D = (loss_D_real + loss_D_fake) * 0.5
        loss_D.backward()
        return loss_D

    def backward_D_A(self):
        """Calculate GAN loss for discriminator D_A"""
        fake_B = self.fake_B_pool.query(self.fake_B)
        self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)

    def backward_D_B(self):
        """Calculate GAN loss for discriminator D_B"""
        fake_A = self.fake_A_pool.query(self.fake_A)
        self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)

    def backward_G(self):
        """Calculate the loss for generators G_A and G_B"""
        lambda_idt = self.opt.lambda_identity
        lambda_A = self.opt.lambda_A
        lambda_B = self.opt.lambda_B
        # Identity loss
        if lambda_idt > 0:
            # G_A should be identity if real_B is fed: ||G_A(B) - B||
            self.idt_A = self.netG_A(self.real_B)
            self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt
            # G_B should be identity if real_A is fed: ||G_B(A) - A||
            self.idt_B = self.netG_B(self.real_A)
            self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt
        else:
            self.loss_idt_A = 0
            self.loss_idt_B = 0

        # GAN loss D_A(G_A(A))
        self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True)
        # GAN loss D_B(G_B(B))
        self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True)
        # Forward cycle loss || G_B(G_A(A)) - A||
        self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A
        # Backward cycle loss || G_A(G_B(B)) - B||
        self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B
        # combined loss and calculate gradients
        self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_B
        self.loss_G.backward()

    def optimize_parameters(self):
        """Calculate losses, gradients, and update network weights; called in every training iteration"""
        # forward
        self.forward()      # compute fake images and reconstruction images.
        # G_A and G_B
        self.set_requires_grad([self.netD_A, self.netD_B], False)  # Ds require no gradients when optimizing Gs
        self.optimizer_G.clear_gradients() #zero_grad()  # set G_A and G_B's gradients to zero
        self.backward_G()             # calculate gradients for G_A and G_B
        self.optimizer_G.minimize(self.loss_G) #step()       # update G_A and G_B's weights
        # self.optimizer_G.clear_gradients()
        # self.optimizer_G.clear_gradients()
        # D_A and D_B
        self.set_requires_grad([self.netD_A, self.netD_B], True)
        # self.set_requires_grad(self.netD_A, True)
        self.optimizer_D.clear_gradients() #zero_grad()   # set D_A and D_B's gradients to zero
        self.backward_D_A()      # calculate gradients for D_A
        self.backward_D_B()      # calculate graidents for D_B
        self.optimizer_D.minimize(self.loss_D_A + self.loss_D_B)  # update D_A and D_B's weights
        # self.backward_D_A()      # calculate gradients for D_A
        # self.optimizer_DA.minimize(self.loss_D_A) #step()  # update D_A and D_B's weights
        # self.optimizer_DA.clear_gradients() #zero_g
        # self.set_requires_grad(self.netD_B, True)
        # self.optimizer_DB.clear_gradients() #zero_grad()   # set D_A and D_B's gradients to zero

        # self.backward_D_B()      # calculate graidents for D_B
        # self.optimizer_DB.minimize(self.loss_D_B) #step()  # update D_A and D_B's weights
        # self.optimizer_DB.clear_gradients() #zero_grad()   # set D_A and D_B's gradients to zero